Fast magic angle spinning for the characterization of milligram quantities of organic and biological solids at natural isotopic abundance by $^{13}\text{C}-^{13}\text{C}$ correlation DNP-enhanced NMR

Adam N. Smith a,1,2, Rania Harrabi a,1, Thomas Halbritter b, Daniel Lee a, Fabien Aussenac c, Patrick C.A. van der Wel d, Sabine Hediger a, Snorri Th. Sigurdsson b, Gaël De Paépe a,*

a Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
b University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
c Bruker BioSpin, Wissembourg, France
d Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands

ARTICLE INFO

Keywords:
Dynamic nuclear polarization
MAS-DNP
Nuclear magnetic resonance
Fast MAS
Pharmaceuticals

ABSTRACT

We show that multidimensional solid-state NMR $^{13}\text{C}-^{13}\text{C}$ correlation spectra of biomolecular assemblies and microcrystalline organic molecules can be acquired at natural isotopic abundance with only milligram quantities of sample. These experiments combine fast Magic Angle Spinning of the sample, low-power dipolar recoupling, and dynamic nuclear polarization performed with AsymPol biradicals, a recently introduced family of polarizing agents. Such experiments are essential for structural characterization as they provide short- and long-range distance information. This approach is demonstrated on diverse sample types, including polyglutamine fibrils implicated in Huntington’s disease and microcrystalline ampicillin, a small antibiotic molecule.

1. Introduction

Structural and dynamical characterization of solids at the atomic scale remains a salient, but difficult task. Magic Angle Spinning solid-state NMR (MAS ssNMR) has proved to be particularly adept at characterizing amorphous to microcrystalline solids ranging from biomolecules to materials [1,2]. Two major axes of methodological development have focused on fast MAS (i.e. sample rotation frequencies >25 kHz) [3,4] and sensitivity enhancement through dynamic nuclear polarization (DNP) [5–11]. With the recent development of both cryogenic fast MAS probes and DNP technologies, these two axes are now combined [12–16].

Fast MAS rates provide numerous experimental benefits, including more efficient averaging of anisotropic interactions (which is particularly important for high magnetic fields), longer coherence lifetimes, and larger and more homogenous radiofrequency field strengths ($i.e.$ B_1) as a result of the smaller coil dimension [4]. To achieve these fast MAS rates, a smaller sample rotor diameter ($i.e.$ outer diameter <3.2 mm) is required, which restricts sample volumes ($e.g.$ ~2.5 μL in a Bruker 1.3 mm rotor vs. ~30 μL in a Bruker 3.2 mm rotor). Such a drastic reduction in sample volume can be advantageous when the sample amount is limited to a few milligrams or less, but also clearly impacts the overall signal-to-noise ratio. This is especially true for the detection of diluted spins with low gyromagnetic ratio ($e.g.$ ^{13}C, ^{15}N). The loss in sensitivity due to the smaller sample volume can in part be mitigated by using indirect detection approaches, via ^1H spins [17,18]. In solids, this generally requires a MAS frequency >40 kHz to substantially reduce the proton linewidths, thus increasing the signal-to-noise ratio, and then benefits from the excellent receptivity of proton spins [19–22]. As a consequence, ^1H-detected fast MAS 2D ^1H–^1H heteronuclear correlation (HETCOR) experiments have been implemented in recent years for samples at natural isotopic abundance (NA), while correlation experiments under fast MAS between less receptive nuclei ($e.g.$ ^{13}C–^{13}C and ^{15}C–^{15}N) could only be applied to isotopically-enriched samples owing to the associated sensitivity limitations [23–28].

DNP is used to boost the sensitivity of ssNMR experiments by transferring the relatively larger polarization of unpaired electrons to NMR-active nuclei of interest. Currently, the most efficient high-field...
2. Material and methods

All experiments were performed on a 9.4 T Bruker Avance III spectrometer equipped with a 263 GHz gyrotron and a corrugated waveguide to transfer the microwave irradiation to the Bruker 1.3 mm MAS DNP probe cooled to ~100 K. The probe was in double resonance ^{1}H/^{13}C configuration. The various DNP samples were impregnated with a DNP matrix containing 5–40 mM AsymPol-POK or cAsymPol-POK. The detailed preparation, matrix composition and radical concentration is given in the Supporting Information for each sample. The sample amount in the 1.3 mm rotor was ~1 mg for LeC classrooms and D$_2$O$_3$K$_2$ fibrils and ~2 mg for ampicillin. The DNP experiments were run at a MAS frequency between 35 and 40 kHz. All 2D 13C/13C DQ/SQ dipolar correlation NMR experiments were acquired with the S_2 recoupling sequence [48,49]. The sequence and precise parameter settings for the different experiments are given in the Supporting Information.

3. Results and discussion

3.1. DNP-enhanced 13C/13C dipolar correlation experiments with fast MAS and low-power recoupling

Access to faster MAS alone has extra built-in benefits: e.g. it enhances the use of low-power 13C/13C dipolar recoupling sequences. Importantly, this allows the safe use of long mixing periods compatible with both long-distance polarization transfers and current radio-frequency (RF) hardware limitations, while keeping a relatively large 13C excitation bandwidth. As is illustrated in Fig. 1, which shows a double-quantum single-quantum (DQ-SQ) dipolar correlation experiment obtained on the uniformly labeled protein LeC (12.76 kDa), this experiment was recorded using the low-power dipolar recoupling sequence S_2, for which the recoupling condition requires the RF field strength to match half the MAS frequency [48], thus limiting the spectral bandwidth on which the recoupling is effective to about that value [49].

As illustrated in Fig. 1, access to the faster spinning of about 40 kHz enables the acquisition of a broadband DQ-SQ S_2 correlation spectrum encompassing all 13C resonances for the protein, which is not possible at lower MAS rates. Indeed, at 13 kHz MAS, the S_2 sequence would only achieve a recoupling bandwidth of ~6.5 kHz [48,49], prohibiting observation of broadband correlations from carbonyl/aromatic to aliphatic carbons. The DNP enhancement for the experiment of Fig. 1 was obtained using cAsymPol-POK as PA, as it was recently shown to be very efficient at polarizing proton-dense molecular systems [46]. Consistent with the characteristics of the AsymPol biradical family [35, 46], a high DNP enhancement of 130 was obtained at 9.4 T and 39.8 kHz MAS, accompanied by a very short build-up time, T_B, of 0.5 s. The spectrum presented in Fig. 1 was recorded in about 6 h with ~1 mg of protein sample. It can be noted that this experiment could also be collected in tens of minutes with a reasonable sensitivity. As is the case for ssNMR studies of proteins at room temperature, 13C/13C correlation spectra are one of the cornerstones of biomolecular DNP, particularly for the study of large systems or the observation of cryo-trapped intermediates. This approach can be combined with specific and sparse labeling, as well as targeted and selective DNP approaches to compensate for the limited resolution resulting from low temperature DNP-NMR measurements [50,51].

3.2. Application on natural isotopic abundance fibrils

Considering the excellent sensitivity of the fast MAS-DNP spectrum obtained with cAsymPol-POK on only 1 mg of 13C/15N-labeled protonated biomolecule, we wondered if it was even necessary to isotopically enrich the sample? Recently, the first steps towards multidimensional 13C/13C and 13C/15N experiments at NA have been demonstrated on samples containing tens of milligrams. This was achieved at 9.4 T using MAS-DNP with a relatively large sample holder (i.e. 3.2 mm outer diameter) and spinning at MAS frequencies less than 15 kHz [30,46,52–65]. Through-bond (i.e. J based) [66] and through-space (i.e. dipolar coupling based) [67] experiments were reported and used, for instance, to determine the de novo assignment of a self-assembled 2′-deoxyguanosine derivative presenting two different molecules in the asymmetric crystallographic unit cell [61]. Beyond the fact that NA NMR is of interest for systems that cannot be easily isotopically labeled, additional benefits of working at NA were further illustrated. More specifically, it
was demonstrated that the 13C–13C spin dynamics of small organic molecules at NA can be treated as a superposition of individual dipolar build-up contributions from intra- and inter-molecular spin pairs [62], which enables internuclear distances of up to ~7 Å to be probed [64]. This would not be possible for fully isotopically-enriched systems.

Subsequently, the approach was applied to disease-relevant protein aggregates, for which spectral fingerprints as well as dipolar build-ups were demonstrated [52], and extended to magnetic fields larger than 10 T [38]. Despite the utility of these studies, made with larger sample holders and lower spinning frequencies, there are numerous advantages to pursuing similar experiments under fast MAS with 1.3 mm (and smaller) rotors for the reasons mentioned above. In particular, it addresses the structural characterization of mass-limited samples that cannot be obtained in large amounts and/or for which isotopic enrichment is not feasible, as for example synthetic and natural small molecules. This is illustrated in Fig. 2 on NA polyglutamine (polyQ) amyloid fibrils composed of the polyQ peptide D$_2$Q$_{15}$K$_2$, which features an analogous atomic structure to the aggregated state of disease-causing polyQ proteins. In this DQ-SQ 13C–13C dipolar correlation spectrum, acquired at 40 kHz MAS on only ~1 mg of fibrils, we chose a long mixing time (23 ms) to allow polarization transfer over long distances (up to about 7 Å [64]) within the polyQ amyloid core. At NA, 13C–13C spin pairs are only 0.01% abundant, and as such long-range distance restraints can be

Fig. 2. (a) 1H–13C CP spectra at a MAS frequency of 40 kHz on ~1 mg of polyQ amyloid fibrils formed by D$_2$Q$_{15}$K$_2$ with (red top trace) and without microwave (μw) (blue bottom trace) irradiation. The spectra were scaled to compensate for different numbers of co-added transients, to allow for intensity comparison. The sample was prepared with 5 mM AsymPol-POK glycerol-d$_8$/D$_2$O/H$_2$O solution (30:60:10 v/v/v). The DNP enhancement, measured by taking the ratio of signal intensity with and without μw irradiation, is 75. The DNP build-up time, T_B, was 3.1 s. (b) Superimposed DNP-enhanced 13C–13C DQ-SQ dipolar correlation spectra on the same sample as in (a), recorded using 13.55 kHz (red) and 40 kHz (black) MAS frequencies (3.2 and 1.3 mm probes, respectively). Assignment for the 13C nuclei from the glutamine residues in the polyQ amyloid core is given in the figure, based on our previous work [52]. Long-range inter-residue Cα and C'/δ autocorrelation peaks are clearly present. Note that the C'/δ autocorrelation peak is folded in the indirect dimension. All the spectra were acquired at 9.4 T. See Supporting Information for more experimental details.
probed without the interfering effects of dipolar truncation [54]. This type of correlation spectrum is ideal for differentiating between polymorphic structures [52]. For example, we clearly observe C_α-C_α and C'-C' correlations from the polyQ backbone, which report on the β-strand configuration of the amyloid core, and C_α-C'/C_δ correlations, which report on side chain conformations [52]. Access to such long-distance constraints directly necessitates the ability to apply RF irradiation for long recoupling times. The use of low-power sequences like S_3 [48,49] while maintaining an efficient recoupling over the entire spectral bandwidth is essential in this case [64] and only possible with fast MAS.

Fig. 3. (a) Chemical structure of ampicillin. (b) DNP-enhanced 2D 1H-13C HETCOR dipolar correlation spectrum of \sim2 mg of microcrystalline ampicillin at NA. A 200 μs CP contact time was used to ensure the observation of only short-range correlations. The MAS frequency was 40 kHz. The ampicillin powder was impregnated with 5 mM of AsymPol-POK in glycerol-d_8/D$_2$O/H$_2$O solution (30:60:10 v/v/v). The 13C assignment given in the spectrum is based on the published assignment [69] (c) DNP-enhanced 2D 13C-13C DQ-SQ dipolar correlation spectrum using the recoupling sequence S_3 [48,49] at 35 kHz MAS on a similar sample of ampicillin impregnated with 40 mM of cAsymPol-POK in glycerol-d_8/D$_2$O/H$_2$O solution (60:30:10 v/v/v). The 13C assignment is mapped out in the 2D spectrum, which yields short-range (equivalent to one-bond and two-bond in blue and cyan, respectively) and long-range (three-bonds and more in yellow) correlations (based on the known assignment [69]). Signals from spinning sidebands, t_1-noise, and solvent are indicated with red asterisks. The interference of the methyl rotation frequency at 100 K with RF pulses led to a reduced sensitivity for the methyl resonances. (see projection on top of the spectrum in panel b), and as a result homonuclear correlations with the methyl carbons are not visible (region therefore not shown). The maximum recoupling bandwidth, which would have been achieved at 13 kHz MAS frequency, is highlighted with a red dashed square. All spectra were acquired at 9.4 T. See Supporting Information for more experimental details.
3.3. Application to natural isotopic abundance microcrystals

Efficient hyperpolarization of the fibrils benefits from the fact that one of the fibril dimensions is on the nanometer scale. The electron polarization, initially transferred from the PAs to the surface protons of the system, can easily be transferred across the width of the fibrils by proton-proton spin-diffusion, ensuring a homogeneous polarization of the nanofibrils [68]. In contrast, hyperpolarizing microcrystals of small organic molecules poses a greater challenge and requires the use of PAs that are particularly suited to polarize proton-dense systems, such as the ones of the Asympol family [35,46]. The efficient transfer of polarization of these radicals is supported by relatively short build-up times, even under fast MAS conditions, which allows hyperpolarization to diffuse through the particles in a time shorter than the intrinsic nuclear relaxation time, $T_1\text{n}$. Thus, using Asympol-POK and cAsympol-POK, we were able to obtain DNP-enhanced 13C–1H heteronuclear (HETCOR) and 13C–13C dipolar correlation experiments at 40 kHz MAS on only 2 mg of ampicillin at NA (see Fig. 3). Although 13C–13C HETCOR experiments on organic microcrystalline solids cannot usually be recorded with standard ssNMR, DNP is needed for mass-limited synthetic small molecules and very useful to shorten experimental time, especially in the case of long $T_1\text{n}$ relaxation times. Extending 2D ssNMR on NA samples also to 13C–13C correlation experiments is orders of magnitude more challenging in terms of sensitivity. From the spectra presented in Fig. 3, we were able to find all expected 13C resonances of the molecule (assignment based on Ref. [69]), with the exception of the two methyl groups (carbons 9, 10) and carbons 2 and 5, which are not resolved in the 2D experiments.

4. Conclusion

In conclusion, we have shown that 13C multidimensional correlation spectra can be acquired with only milligram quantities of sample at NA. More specifically, broadband 13C–13C dipolar correlation spectra, only possible under fast MAS, were acquired on biomolecular aggregates and microcrystalline small molecules, both at NA. The newly developed PAs of the Asympol family, such as Asympol-POK and cAsympol-POK [35, 46], made these experiments feasible in a reasonable amount of time, thanks to their short hyperpolarization build-up times which increase the overall sensitivity of these DNP experiments under fast MAS.

In addition to the added spectroscopic benefits of performing experiments at fast MAS, the demonstrated feasibility of such experiments for small amounts of sample at NA also opens avenues for the characterization of sample types that were, so far, not amenable to ssNMR analysis. In particular, the characterization of ex-vivo amyloid fibrils from patient- or animal-derived systems is an intriguing aspect of research associated with numerous neurodegenerative disorders [70, 71]. As it is well known that amyloid fibrils adopt polymorphic structures and that the cellular milieu (i.e. molecular crowding, interaction with chaperones, post-translational modifications, etc.) can dictate the adopted conformation, it is imperative to study aggregates that are formed under native conditions [72]. With the method demonstrated here, one can now envision the study of ex-vivo amyloids at NA in the milligram quantities available from these systems.

The work presented here should also prove impactful for the study of natural products that are of great importance for numerous medicinal purposes. Indeed, a continued hurdle in the use and development of natural products, e.g. as new drug candidates, is their characterization, because they are typically isolated in small quantities. The structural information that can be gained from ssNMR is also invaluable for the characterization of other small molecules and their formulations. Finally, applications to other types of organic or hybrid (nano)materials, including thin films, can be enabled by these types of 2D NA ssNMR studies. The ability to rapidly characterize milligram quantities with multidimensional correlation experiments, as demonstrated here, will enable more routine use of ssNMR in these endeavors.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Gaël De Pape has patent Dinitroxide biradical compounds as polarizing agents pending to US. Snorri Sigurdsson has patent Dinitroxide biradical compounds as polarizing agents pending to US.

Data availability

Data will be made available on request.

Acknowledgment

The authors thank O. Dakhlaoui for providing the labeled LecA sample, and I. Matlabov and R. Kodali for previously preparing the polycl peptide sample. This work was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie Action 799523-BOLD-NMR (to A.N.S.) and the European Research Council Grant ERC-COG-2015 No. 682895 (to G.D.P.). In addition, this work was partially supported by funding from the French National Research Agency (CHB-EUR-GS and Labex ARCANE ANR-17-EURE-0003, Glyco@Alps ANR-15-IDEX-02, and ANR-16-CE11-0030-03), the Deutsche Forschungsgemeinschaft (DFG) through a postdoc fellowship (414196290), the University of Iceland Research Fund, and NIH grant R01 GM112678 (P.v.d.W.).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ssnmr.2022.101850.

References

