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Simulating electron spin resonance spectra of macromolecules labeled

with two dipolar-coupled nitroxide spin labels from trajectories
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An efficient method for simulating continuous-wave electron spin resonance spectra (ESR) of

molecules labeled with two dipolar-coupled nitroxides from trajectories of the molecular motion is

presented. Two approximate treatments of the dipolar spin evolution, resulting in significantly

shorter simulation times, are examined in order to determine their range of applicability.

The approach is illustrated in the context of a double-helical B-DNA. ESR spectra for DNA

undergoing anisotropic global diffusion and internal stretching dynamics are calculated for three

different labeling geometries with the spin labels bracketing, respectively, three, two and one base

pairs. While multifrequency spectra of all three labeling schemes are very sensitive to DNA

tumbling, the last one is found to be most informative about the local DNA dynamics.

I. Introduction

The possibility to introduce spin labels at specific positions

along the polymer chains of proteins1 and nucleic acids2–7 has

made electron spin resonance (ESR) an important experimental

technique for probing the local structure and dynamics

of proteins,8–10 DNA,11–15 and RNA.16,17 Perhaps more

importantly for structural biology, labeling simultaneously

with two spin labels and detecting the dipolar interaction of

their electron spins provide valuable long-range information.

Under favorable conditions distances of up to 80 Å can be

probed using pulse-ESR methods.18 In the last decade, measuring

long-range distances in doubly-labeled molecules using DEER

(double electron–electron resonance)—also known as four-pulse

PELDOR (pulse electron double resonance)—has become well

established and has been widely applied to a diverse range of

biological systems.18–21 However, distance measurements with

pulse-ESR methods are performed under cryogenic temperatures

in frozen samples, which lack information about the biologically

relevant molecular dynamics.

Detecting dipolar interactions between two electron spins in

solution at room temperature by performing routine continuous-

wave (cw) ESR experiments has been of interest ever since the

early days of site-directed spin-labeling.22,23 Although the

range of distances accessible with cw-ESR is limited to up to

B20 Å,24 valuable information has been obtained for many

different biomolecules. The construction of models for the

open states of the potassium channel KcsA25,26 and the

mechanosensitive channel MscL27,28 on the basis of information

from dipolar-broadened cw-ESR spectra are two particularly

notable examples.

In contrast to the pulse-ESR methods in the solid state, for

which a robust quantitative analysis for extracting distances

and distance distributions exists,29 deducing distances from

the solution cw-ESR spectra has remained very qualitative. To

a large extent, the uncertainties associated with a qualitative

analysis have been compensated by the extensive labeling of

many sites. In this way, it has been possible to correlate the

regularities in the extensive data sets with structural changes,

as exemplified in ref. 25–28.

The work of Hustedt and Beth stands out as a systematic

effort to develop the tools necessary to rigorously extract

distances and distance distributions from cw-ESR spectra of

mobile proteins.30 A numerical scheme for calculating dipolar-

coupled ESR spectra in the presence of rigid-body rotational

diffusion has been developed for isotropic tumbling and used

to test the sensitivity of such spectra to global dynamics.31

More recently, to allow for disorder of the spin label side

chain, and thus account for a distribution of inter-spin-label

distances, the tether-in-a-cone model has been introduced and

combined with the calculation of dipolar-coupled cw-ESR

spectra.32 The application of this model to doubly-labeled

T4 lysozyme, however, was limited to rigid-limit spectra in

which global or internal dynamics were absent.32 It is therefore

highly desirable to be able to rigorously quantify dipolar-

coupled cw-ESR spectra in the presence of complex global and

internal dynamics expected from spin-labeled biomolecules in

solution at physiological temperatures.

Recently, we have developed efficient numerical integrators

for treating the spin dynamics of an electron-nuclear spin system
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characteristic of nitroxides and for simulating stochastic

trajectories for the most general case of anisotropic, restricted

rotational diffusion.33 Propagating the rotational and spin

dynamics in time allows for the separation of the quantum

mechanical and classical motional aspects of the problem,

resulting in a highly modular and flexible simulation approach.

ESR spectra for a very broad range of complex motional

models, including the familiar MOMD34 and SRLS35 models,

could therefore be easily simulated.33 In fact, it was possible

to treat motions on different spatial and temporal scales

by seamlessly combining phenomenological dynamics with

atomistic molecular dynamics simulations.36–38

In the present paper this technology is extended to

biomolecules labeled simultaneously with two dipolar-coupled

nitroxide spin labels. Our goal is to make possible the efficient

simulation of cw-ESR spectra of such biomolecules from

stochastic models of their dynamics and, eventually, from

MD trajectories. This will hopefully allow for the extensive

quantitative evaluation of different dynamical models against

multifrequency cw-ESR experiments performed at physiological

temperatures. In this way, molecular dynamics probed by

solution ESR can be properly interpreted in their structural

context, thus assessing their importance for biological function.

Recently, a novel spin label that lacks internal degrees of

freedom has been introduced for the labeling of nucleic

acids.7,15 DNA molecules labeled with two such spin labels

have been synthesized and characterized by PELDOR.39,40

The distances between the spin labels in these samples,

however, were too large to be detected by room-temperature

cw-ESR. Here, we use the developed computational methodology

to assess whether two closely-placed spin labels will provide

experimental access to the global and local DNA dynamics in

solution by cw-ESR.

The paper is organized as follows. The treatment of the spin

dynamics for two dipolar-coupled nitroxides with the purpose

of simulating cw-ESR spectra is developed in the next section,

where an efficient numerical integrator is presented and two

approximate treatments of the dipolar interaction are considered.

Section III is concerned with modeling the global and internal

dynamics of the spin-labeled macromolecule. The general

discussion is followed by a concrete treatment of a double-

helical, B-form DNA containing two spin labels. Spectral

simulations illustrating the developed formalism in applications

to the introduced DNA systems are presented in Section IV.

Here, in addition to exploring the sensitivity of the dipolar-

coupled cw-ESR spectra to the parameters of the global and

internal DNA motions, the approximate simulation strategies

are compared with the exact treatment. Our conclusions are

given in Section V.

II. Spin dynamics

We consider an ensemble of nitroxide free radicals in solution.

Each nitroxide spin label contains a system of two interacting

spins: the spin of an unpaired electron (S = 1/2) and a

nitrogen nuclear spin (I = 1 for 14N and I = 1/2 for 15N).

Differently from ref. 33, where the electron-nuclear spin

system on a single nitroxide was assumed not to be interacting

with the spin system on another nitroxide, here the electron

spins on pairs of nitroxides are coupled through their dipolar

interaction. Having in mind a biomolecule covalently labeled

with two spin labels, the pair of interacting nitroxides is

assumed to be fixed in time. In addition, the sample is assumed

to be sufficiently dilute such that there are no inter-pair

interactions. As a result, the object of interest is the two

electron–two nuclear spin system on the two interacting spin

labels. The state of this spin system can be described by the

density operator r̂, which is a 36 � 36 (for two 14N) or 16 � 16

(for two 15N) matrix. In the following we will make explicit

reference to the naturally abundant 14N species. However, the

presented formalism is general and applies to the 15N case

as well.

A. The spectrum

A typical cw-ESR spectrum recorded under weak microwave

power can be calculated as the one-sided Fourier transform of

the free induction decay (FID) of the transverse magnetization

after a p/2 (901) pulse.41 Because ESR is not a single-molecule

technique, a large number of spins—each one experiencing

different realizations of the stochastic molecular dynamics—

contribute to the signal. In the simulation approach described

in this work, the macroscopic transverse magnetization

hM+(t)i is calculated by simulating the evolution of the

microscopic magnetization M+(t) associated with a single

trajectory and averaging over many realizations of the

motional dynamics. Instead of calculating M+, in numerical

work it is much more convenient to work in a coordinate

frame that rotates about the applied constant magnetic field

with the Larmor frequency of the electron spin, o0. Denoting

variables in the rotating frame with a prime, the magnetization

can be written as

M0
þðtÞ ¼ TrfŜþr̂0ðtÞg; ð1Þ

where r̂(t) is the density operator of the spin system of interest

evaluated along a single dynamical trajectory. At the end, the

spectrum is calculated as

Sðo� o0Þ ¼
Z 1
0

hM0
þðtÞie�iotdt: ð2Þ

For a system of dipolar-coupled electron spins on two nitroxides

the transverse magnetization is given by the sum

M0
þðtÞ ¼ TrfðŜ1

þ þ Ŝ
2

þÞr̂0ðtÞg

¼ Trfrþ"ðtÞ þ rþ#ðtÞ þ r"þðtÞ þ r#þðtÞg;
ð3Þ

where Ŝ1
+ and Ŝ2

+ are the spin operators of the two interacting

electrons. The matrices r+m, r+k, rm+, and rk+ are sub-blocks

of the full density matrix defined as

r+m = h�+|r̂0|++i, r+k = h��|r̂0|+�i,

rm+ = h+�|r̂0|++i, rk+ = h��|r̂0|�+i. (4)

In the context of the full density matrix written in the

two-electron-spin basis

|m1
S, m

2
Si = {|++i, |+�i, |�+i, |��i}, (5)
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these sub-blocks are positioned as follows:

r̂0 ¼

� � � �
r"þ � � �
rþ" � � �
� rþ# r#þ �

2
664

3
775: ð6Þ

The trace on the second line in eqn (3) is only over the nuclear

spin states of the first and second nitroxides. To calculate

the spectrum, therefore, we need to be able to propagate

numerically these four 9 � 9 (for I = 1) matrices starting

from their initial values. For all the four matrices, the initial

condition appropriate for the description of an FID after a p/2
pulse is the outer product of the 3 � 3 identity matrices in the

respective nuclear Hilbert spaces, which is the 9 � 9 identity

matrix.

Below we deduce how to numerically propagate the matrices

(4) starting from the evolution of the full density matrix. It

turns out that in the high-field approximation their evolution

is decoupled from the evolution of the other sub-blocks of r̂0.

B. The spin Hamiltonian

The spin Hamiltonian of the interacting nitroxides is

Ĥ(t) = Ĥ1(t) + Ĥ2(t) + ĤD(t), (7)

where (in units of angular frequency)

Ĥa(t) = |ge|[B�Ga(t)�Ŝa + Îa�Aa(t)�Ŝa] � gnB�Îa (8)

and

ĤD(t) = Ŝ1�D(t)�Ŝ2 + JŜ1�Ŝ2. (9)

The first two terms on the right-hand side of eqn (7) correspond

to each of the two spin labels designated by a = 1,2. They

account for the electron and nuclear Zeeman interactions as

well as the hyperfine interaction on each nitroxide [eqn (8)].

The third term couples the electron spins on the two spin labels

through their dipolar and scalar interactions [eqn (9)]. In

eqn (8), ge and gn are, respectively, the electronic and nuclear

gyromagnetic ratios, Ŝa is the spin operator of the unpaired

electron on radical a, and Îa is the spin operator of the nitrogen

nucleus on radical a. Similarly, Ga and A
a are the Zeeman and

hyperfine coupling tensors of spin label a. In eqn (8), Aa is in

units of magnetic field while Ga is obtained as the ratio of the

dimensionless electron g-tensor ga, which is typically reported,

and the free electron g-factor ge: G
a � ga/ge. Commonly, the

magnetic tensors Ga and Aa are taken to be diagonal in the

same nitroxide-fixed coordinate frame Na. Their explicit time

dependence in eqn (8) is due to the dynamics of this frame with

respect to the stationary laboratory frame L, in which the

constant magnetic field B= (0,0,B0) is applied. Since the spins

are quantized along B all the vector and tensor components in

the Hamiltonian are with respect to L. Following the standard

practice, the nuclear quadrupolar (for I = 1) interaction has

been neglected. The nuclear Zeeman interaction, which is also

typically neglected in simulations of slow-motional cw-ESR

spectra, is retained in the expressions of this section. However,

it is set to zero in the illustrative simulations of Section IV.

Being interested in two nitroxides, we assume that the

Zeeman tensors for the two spin systems are identical.

Neglecting their anisotropy, and invoking the point dipole

approximation, the dipolar coupling tensor in eqn (9) is

given by

DðtÞ ¼ m0�h
4p

g2e
E� 3rðtÞrðtÞ

r3ðtÞ ; ð10Þ

where r(t) is the magnitude and �r(t) the direction of the vector

r(t), pointing from one of the unpaired electrons to the other,

and E is the 3 � 3 identity matrix. The scalar coupling J in

eqn (9) is invariant upon rotation of the molecules and does

not depend on time.

Let us define the electron Larmor frequency o0 = �geB0G0,

where G0 = Tr{Ga}/3 is assumed to be the same for a = 1,2.

Similarly, on = �gnB0 is taken to be the same for both spin

labels. Going to the interaction picture defined by the static

Hamiltonian Ĥ0 = o0(Ŝ
1
z + Ŝ2

z) and neglecting the nonsecular

terms, the Ĥas become

Ĥ
a 0ðtÞ ¼ jgej½B0G

a
zz
0ðtÞ þ aaðtÞ � Î

a
�Ŝa

z þ onÎ
a
z : ð11Þ

Here, G0zz is the respective component (in the lab frame) of the

traceless tensor G0 � G � G0E, and the components of

the vector a are related to the components (in the lab frame)

of the hyperfine tensor A:33

ai(t) = Aiz(t), i = x,y,z. (12)

For later convenience, we define the operator

V̂
aðtÞ � jgej½B0G

a
zz
0ðtÞ þ aaðtÞ � Î

a
�=2: ð13Þ

Neglecting the nonsecular terms proportional to Ŝ� in the

high-field approximation is based on the assumption that the

magnetic tensors G(t) and A(t) fluctuate on a time scale much

slower than the Larmor precession time scale. Similarly,

assuming that the dipolar coupling interaction varies on a

much slower time scale compared to the Larmor precession of

the electron spin, the high-field dipolar–scalar Hamiltonian in

the rotating frame becomes

ĤD0(t) = D(t)[Ŝ1
zŜ

2
z � (Ŝ1

+Ŝ2
� + Ŝ1

�Ŝ
2
+)/4]

+ J[Ŝ1
zŜ

2
z + (Ŝ1

+Ŝ2
� + Ŝ1

�Ŝ
2
+)/2] (14)

where

DðtÞ � DzzðtÞ ¼
m0�h
4p

g2e
1� 3r2zðtÞ

r3ðtÞ ð15Þ

is the only matrix element of the dipolar coupling tensor D that

needs to be calculated. Here, rz is the z component of the unit

vector r with respect to the laboratory-fixed system of axes.

The absence of nonsecular terms automatically excludes the

possibility to account for processes that lead to T1 relaxation

(and thus for T1 contribution to T2) using the high-field

Hamiltonian. When dealing with slow motional cw-ESR spectra

this approximate form is typically justified since T1, which

depends on motions at the time scale of the Larmor precession,

is much longer than T2, which is dominated by slow motions.

C. Numerical propagation of the spin dynamics

Let

eih[Ĥ
10
(t) + Ĥ

20
(t)] = eihĤ

10
(t)eihĤ

20
(t) � U1

h(t)U
2
h(t) (16)
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and

UD
h (t) � e�ihĤ

D0
(t) (17)

denote the propagators at time t over a short time step h under

the action of only the Zeeman–hyperfine interactions

[eqn (16)] or the dipolar–scalar interactions [eqn (17)]. The

order of U1
h and U2

h on the right-hand side of eqn (16) can of

course be exchanged since Ĥ1 and Ĥ2 commute. The dipolar

Hamiltonian ĤD, however, does not commute with Ĥ1 and Ĥ2.

For a short time step, the propagation of the density matrix

under the full Hamiltonian may be performed as

r̂
0 ðtþ hÞ ¼ �U

1
h

�U
2
hU

D
h r̂

0 ðtÞ �U
D
h U

2
hU

1
h ð18Þ

where Ū denotes the Hermitian conjugate of U and the

dependence of the propagators on t has been dropped for

clarity. This scheme, correct to first order in h, implies a

two-step procedure for the numerical integration in which

the dipolar–scalar propagator acts first, followed by the

propagator due to the Zeeman and hyperfine interactions:

ðiÞ ~r ¼ UD
h ðtÞr̂0ðtÞ �U

D
h ðtÞ;

ðiiÞ r̂0ðtþ hÞ ¼ �U
1
hðtÞ �U

2
hðtÞ~rU2

h ðtÞU1
h ðtÞ:

ð19Þ

We now turn to the implementation details of these two steps.

1. Short-time dipolar–scalar propagator. We write the matrix

representation of the Hamiltonian ĤD0 in the two-electron-spin

basis (5) and keep in mind that each one of the four kets |m1
S, m

2
Si

has nine components in the Hilbert space of the nuclear spins,

corresponding to (m1
I, m

2
I) = {11, 10, 1%1, 01, 00, 0%1, %11, %10, %1%1}.

However, this dependence will not be shown explicitly since the

dipolar–scalar evolution does not mix the nuclear spin states.

The matrix representation of the dipolar–scalar Hamiltonian

(14) in the basis (5) is

Ĥ
D 0 ¼ 1

4

Dþ J 0 0 0
0 �D� J �Dþ 2J 0
0 �Dþ 2J �D� J 0
0 0 0 Dþ J

2
664

3
775: ð20Þ

Therefore, the matrix representation of the propagator (17) is

UD
h ¼

e�ifþ 0 0 0
0 eifþ cosf� ieifþ sinf� 0
0 ieifþ sinf� eifþ cosf� 0
0 0 0 e�ifþ

2
664

3
775 ð21Þ

where

f+(t) � h[D(t) + J]/4, f�(t) � h[D(t) � 2J]/4. (22)

Note that in the absence of scalar coupling, i.e., J=0, f+= f�.
(This is the situation we consider in the numerical examples of

Section IV.) For small f�, UD
h is essentially diagonal.

(The short-time dipolar propagator of the weak-coupling

approximation in Section IID1 is equivalent to UD
h from

eqn (21) after setting f� = 0.)

Acting with the matrix representation of UD
h on the

representation of the density matrix, eqn (6), we find that

the propagation step (i) in eqn (19) is achieved as follows:

~rþ"
~r"þ

� �
¼ ei2fþ

cosf� i sinf�
i sinf� cosf�

� �
rþ"ðtÞ
r"þðtÞ

� �
ð23Þ

and

~rþ#
~r#þ

� �
¼ e�i2fþ

cosf� �i sinf�
�i sinf� cosf�

� �
rþ#ðtÞ
r#þðtÞ

� �
: ð24Þ

Clearly, the evolution of r+k and rk+ is decoupled from the

evolution of r+m and rm+. Since each one of the four density

matrices in eqn (23) and (24) is a 9 � 9 matrix in the nuclear

Hilbert space, these short-time propagation rules should be

applied 81 times—one for each of the respective nuclear-state

components.

2. Short-time Zeeman–hyperfine propagator. The Zeeman

and hyperfine interactions are limited to one or the other of the

nitroxides in the pair of spin labels. Therefore, we first derive

the numerical propagation rules for the density matrix r̂a of a
spin system consisting of a single electron spin and a single

nuclear spin under the action of the spin Hamiltonian Ĥa. For

S = 1/2 this density matrix (in the rotating frame) can be

written as

r̂a 0 ¼ ra"Ŝ" þ ra#Ŝ# þ raþŜ� þ ra�Ŝþ ¼
ra" ra�
raþ ra#

� �
; ð25Þ

where the electron spin operators Ŝk have been written in the

basis ma
S = (+,�). The ‘‘coefficients’’ rak are 3 � 3 (I = 1) or

2 � 2 (I = 1/2) matrices in the Hilbert space of the nuclear spin.

Substituting eqn (25) in the Liouville–von Neumann equation

_̂ra 0ðtÞ ¼ �i½Ĥa 0ðtÞ; r̂a 0ðtÞ�; ð26Þ

and using the Hamiltonian (11), yields the following decoupled

evolution equations for rak:

_ram(t) = �i[V̂a(t), ram(t)] � ion[Î
a
z, r

a
m(t)]

_rak(t) = i[V̂a(t), rak(t)] � ion[Î
a
z, r

a
k(t)]

_ra�(t) = �i{V̂a(t), ra�(t)} � ion[Î
a
z, r

a
�(t)]. (27)

(In these expressions dot indicates a time derivative, [�,�] is a
commutator, and {�,�} is an anticommutator.) To propagate rak
(t) over a short time step h we introduce the phase factors

fa
BðtÞ � hjgejB0G

a
zz
0ðtÞ ð28Þ

and the operators

Ua
�ðtÞ � eih½jge ja

aðtÞ�Îa=2�on Î
a
z �: ð29Þ

When the nuclear Zeeman interaction is negligible, Ua
+ = Ua

�.

(In all the numerical examples of Section IV the nuclear

Zeeman interaction will be neglected.) In terms of Ua
� and

fa
B, the short-time evolution corresponding to eqn (27) can be

achieved as

ra"ðtþ hÞ ¼ �U
a
þðtÞra"ðtÞUa

þðtÞ;

ra#ðtþ hÞ ¼ Ua
�ðtÞra#ðtÞ �U

a
�ðtÞ;

ra�ðtþ hÞ ¼ e�if
a
BðtÞUa

�ðtÞra�ðtÞUa
�ðtÞ:

ð30Þ

This integration scheme is equivalent to eqn (27) to first order

in h.
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It is now straightforward to deduce from eqn (30) that the

second step in eqn (19) implies the updating schemes

rþ"ðtþ hÞ ¼ eif
1
BðtÞU1

�ðtÞ �U
2
þðtÞ~rþ"U2

þðtÞU1
þðtÞ;

r"þðtþ hÞ ¼ eif
2
BðtÞ �U

1
þðtÞU2

�ðtÞ~r"þU2
þðtÞU1

þðtÞ;
ð31Þ

and

rþ#ðtþ hÞ ¼ eif
1
BðtÞU1

�ðtÞU2
�ðtÞ~rþ# �U

2
�ðtÞU1

þðtÞ;

r#þðtþ hÞ ¼ eif
2
BðtÞU1

�ðtÞU2
�ðtÞ~r#þU2

þðtÞ �U
1
�ðtÞ:

ð32Þ

According to eqn (31) and (32), the propagation of a single

density matrix block requires first the action ofU2
� on nine (for

the nuclear spin states of the unaffected nitroxide 1) 3 � 3

sub-matrices, and then the action of U1
� on another nine (for

the nuclear spin states of the unaffected nitroxide 2) 3 � 3

sub-matrices. As a result, only this part of the propagation is

already at least 72 [ = 4 � (9 + 9)] times slower than the

propagation of the density matrix for a single nitroxide.

The two approximations considered next reduce substantially

the number of operations per integration time step leading to

significant speed-up. The trick is to always remain in the

Hilbert spaces of the separate spin labels and avoid working

in the much larger space of their outer product.

D. Simplifying approximations

1. Weak dipolar coupling. The approximation of weak

dipolar coupling consists of retaining only the diagonal part,

proportional to Ŝ1
zŜ

2
z, of the dipolar coupling Hamiltonian in

eqn (14). Neglecting the off-diagonal part is equivalent to

setting f� = 0 in the dipolar short-time propagator from

eqn (21), which leads to a diagonalUD
h as well. As a result, step

(i) in eqn (19), previously given by eqn (23) and (24), boils

down to simple multiplication by scalar phase factors:

~r+m E ei2f+(t)r+m(t), ~rm+ E ei2f+(t)rm+(t),

~r+k E e�i2f+(t)r+k(t), ~rk+ E e�i2f+(t)rk+(t). (33)

The evolution of each of the four sub-blocks of the density

matrix has thus decoupled from the others, simplifying the

dipolar propagation substantially. In fact, steps (i) and (ii) in

eqn (19) can now be combined in a single step. The combined

update for r+m, for example, is achieved as [cf. eqn (31)]

rþ"ðtþ hÞ ¼ ei2fþðtÞeif
1
BðtÞU1

�ðtÞ �U
2
þðtÞrþ"ðtÞU2

þðtÞU1
þðtÞ:
ð34Þ

Similar expressions hold for rm+, r+k, and rk+. We now

make two important observations that follow directly from

this much simpler evolution. For concreteness, the approximations

are introduced below for r+m but apply as well to rm+, r+k,

and rk+.

Imagine that at some instant in time r+m is proportional to

the outer product of two matrices in the nuclear Hilbert spaces

of the first and second nitroxides, respectively, i.e., it has the

following separable form

r+m(t) = eiy(t)r1+(t) # r2m(t) (35)

Then, under the weak dipolar coupling approximation, r+m

retains its separable form during later times. This can be seen

by substituting eqn (35) in (34) and rewriting the result as

r+m(t + h) = eiy(t+h)r1+(t + h) # r2m(t + h) (36)

where the matrices r1+ and r2m evolve only with the Zeeman

and hyperfine interactions [cf. eqn (30)]:

r1þðtþ hÞ ¼ eif
1
BU1
�r

1
þðtÞU1

þ; r
2
"ðtþ hÞ ¼ �U

2
þr

2
"ðtÞU2

þ; ð37Þ

and the premultiplying phase factor takes care of the evolution

due to the dipolar coupling:

dD(t + h) � eiy(t+h) = ei2f+(t)eiy(t) = ei2f+(t)dD(t). (38)

In fact, at t = 0 the matrix r+m, which is the 9 � 9 identity

matrix, does have the postulated separable form:

r+m(0) = E9 = E1
3 # E2

3 = r1+(0) # r2m(0). (39)

In general, the dipolar coupling destroys this form during

evolution and for any t4 0, r+m(t) can no longer be written as

an outer product. However, as we just saw, under the approx-

imation of weak dipolar coupling r+m remains separable.

The initial condition (39) brings us to the second important

observation. Note that the numerical propagation of r2m is

achieved by sandwiching it with Ū2
+ and U2

+ [eqn (37)]. Since

Ua
+ is unitary, Ūa

+ is its inverse. The initial r2m(0), therefore,
will remain identical to E3 throughout. In contrast, r1+, which

also starts as E3, will evolve in a nontrivial way under the

action of U1
� and U1

+. Hence, we conclude that for all t

r+m(t) = dD(t)r
1
+(t) # E2

3. (40)

The implication is that the scalar dD and the 3 � 3 matrix r1+
have all the information contained in the 9 � 9 matrix r+m.

Following the same logic we deduce that

rm+(t) = dD(t)E
1
3 # r2+(t). (41)

Similar expressions can be obtained for r+k and rk+but with

dD replaced by its complex conjugate:

rþ#ðtÞ ¼ d	DðtÞr1þðtÞ 
 E2
3 ; r#þðtÞ ¼ d	DðtÞE1

3 
 r2þðtÞ: ð42Þ

Substituting in eqn (3) we obtain

M+(t) = Re{dD(t)}[Tr{r
1
+(t)} + Tr{r2+(t)}] (43)

for the transverse magnetization in the weak-coupling limit.

Hence, in the weak-coupling approximation only two

3 � 3 matrices and a single scalar need to be evolved according

to the third line in eqn (30) and eqn (38), starting from

r1+(0) = r2+(0) = E3 and dD(0) = 1. This should be contrasted

with the general case, which required the evolution of four

9 � 9 matrices. The ensuing substantial speed-up makes the

approximation of weak dipolar coupling very attractive from a

computational standpoint.

2. Beyond the weak-coupling approximation. Here, we

propose and test an approximation based on imposing the

structure of eqn (40)–(42) on the density matrices for all times.

In contrast to the discussion above, the full (nondiagonal)

dipolar–scalar Hamiltonian is used in the short-time propagation

step.
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Inserting r+m and rm+ from eqn (40) and (41) into eqn (23)

in order to account for the short-time evolution due to dipolar

coupling spoils their desired separable forms. To recover

separability, we introduce the projection operators O2 and

O1 that act on the 9 � 9 matrices rkm to produce the

3 � 3 matrices r1k = O2rkm and r2m = O1rkm in the separate

nuclear Hilbert spaces. In terms of the matrix elements, the

action of O2 on r+m is defined as42

hijðO2rþ"Þjji ¼ hijr1þjji ¼
1

3

X
k

hikjrþ"jjki: ð44Þ

Similarly, the action of O1 on rm+ produces

hkjr2þjli ¼
1

3

X
i

hikjr"þjili: ð45Þ

Acting with O2 and O1 on the resulting equations, the dipolar

evolution step of eqn (23) becomes

hi|~r1+|ji = cosf�hi|r1+|ji + isinf�dijs
2
+,

hk|~r2+|li = cosf�hk|r2+|li + isinf�s
1
+dkl, (46)

where we have defined the scalars

sak �
1

3

X
i

hijrakjii; ð47Þ

and used hi|E3|ji = dij, Sihi|E3|ii/3 = 1. Updating the two

3 � 3 matrices ~ra+ according to the third line in eqn (30)

completes the numerical propagation of the matrices r1+ and

r2+. Similarly, substituting eqn (42) in eqn (24) and projecting

to the separate nuclear Hilbert spaces lead to the following

evolution equations:

hi|~r1+|ji = cosf�hi|r1+|ji � isinf�dijs
2
+,

hk|~r2+|li = cosf�hk|r2+|li � isinf�s
1
+dkl. (48)

As before, the evolution of ra+ over a time step h is completed

by updating the matrices ~ra+ according to eqn (30).

The projection operation performed after every step of

dipolar–scalar evolution ensures that we always remain in

the separate nuclear Hilbert spaces of the two coupled radicals

without ever having to go to the much larger space of their

outer products. However, notice that the derived approximate

evolution rules for ra+ in eqn (46) and (48) are distinct.

Therefore, it is necessary to evolve two separate copies of ra+,

one to be used in eqn (46) and the other in eqn (48). As a

result, four 3 � 3 matrices need to be evolved in the proposed

approximation, as opposed to four 9 � 9 matrices in the exact

case and two 3 � 3 matrices in the approximation of weak

dipolar coupling.

III. Models of molecular motion

In applications of solution ESR to biological molecules, the

main interest is in deducing structural and dynamical information

about the biomolecule. From that perspective, the spin

dynamics considered in great detail in the previous section is

of interest only to the extent that it is coupled to the molecular

dynamics. Therefore, a realistic modeling of the structure and

dynamics of the spin-labeled molecule is as essential for the

analysis and simulation of cw-ESR as the rigorous treatment

of the spin dynamics. Our main motivation in developing

a spectral simulation approach utilizing trajectories of the

molecular motion lies in our desire to employ realistic molecular

models—spanning the range from atomically-detailed molecular

dynamics simulations to phenomenological stochastic models—

in the interpretation of ESR data.

In this section, after introducing a general framework for

treating global and internal molecular motions for the purposes of

simulating ESR spectra, we focus on a double-helical DNA

labeled with two spin labels that lack internal degrees of

freedom.

A. Rotational transformations and a motional model

For our purposes, the coupling of the quantum to the classical

dynamics is through the three rotation matrices RLN
1

, RLN
2

and RLM, describing the orientation of the systems of coordinate

axes attached to the two nitroxides (Na) and to the macromolecule

(M) with respect to the laboratory-fixed axes (L). Once available

at every time step, these matrices are used to evaluate the following

tensor components with respect to the lab frame:

Ga;L
zz ðtÞ ¼

X
k

RLNa

zk ðtÞG
a;Na

kk RLNa

zk ðtÞ;

aa;Li ðtÞ ¼ Aa;L
iz ðtÞ ¼

X
k

RLNa

ik ðtÞA
a;Na

kk RLNa

zk ðtÞ;
ð49Þ

and

rLz ðtÞ ¼
X
k

RLM
zk ðtÞrMk ðtÞ: ð50Þ

The scalars Ga,L
zz , aa,Li and rLz are then used to calculate the

contributions of the Zeeman, hyperfine and dipolar couplings to

the spin Hamiltonian. In the last equation it is assumed that the

components of the inter-spin-label vector r are available in a

system of coordinate axes M rigidly attached to the spin-labeled

molecule.

To a good approximation in most nitroxides the spin

density is partitioned almost equally between the nitroxide

oxygen (O) and nitrogen (N) atoms. This results in four

relevant inter-nitroxide vectors r (corresponding to the

distances O1–O2, N1–N2, O1–N2, N2–O1) that need to be

transformed from the molecular to the laboratory frame using

eqn (50). Using these four vectors, a single dipolar tensor can

be obtained as the average of the four different dipolar-

coupling contributions calculated according to eqn (15).

Although for large separations of the two spin labels the

differences between the four vectors may be insignificant,

keeping track of all four is expected to be important for a

pair of close labels. (We have done so in the simulations

reported in Section IV.)

A general model to follow the dynamics of the various

coordinate frames with respect to each other, appropriate

for a macromolecule labeled with two spin labels, can be

represented as shown in Fig. 1. In this scheme, the orientation

of the global molecular frame M with respect to L is assumed

to undergo free diffusion (tumbling) independently from the

internal dynamics of the molecule and the two spin labels.

Clearly, this is an approximation, which can fail if, for

D
ow

nl
oa

de
d 

by
 R

oc
ke

fe
lle

r 
U

ni
ve

rs
ity

 o
n 

12
 J

ul
y 

20
11

Pu
bl

is
he

d 
on

 2
0 

Ju
ne

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1C
P2

04
30

K
View Online

http://dx.doi.org/10.1039/c1cp20430k


This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 12785–12797 12791

example, the hydrodynamic properties (i.e., the rotational

diffusion tensor) of the macromolecule change as a result

of its internal flexibility. In principle, the trajectory-based

formalism can be easily adapted to treat a time-dependent

diffusion tensor if such a tensor can be estimated on the fly

from the instantaneous molecular conformations. Here, we do

not consider this complication and assume that the tumbling

of M in solution is well described by a constant, possibly

anisotropic, diffusion tensor.

The model still requires some choices to be made regarding

the dynamics of the frames Na and the vector r with respect

to M. These motions, determined by the flexibility of the

biomolecule and the spin labels, are most likely coupled in a

non-trivial way. Therefore, we do not aim to propose a

universal motional model for the internal molecular dynamics.

In fact, we believe that such a model has to be developed on a

case-by-case basis. Below, we adapt the general model shown

in Fig. 1 to a double-stranded, B-DNA labeled with two rigid

spin labels.

B. Doubly-labeled DNA geometries

The DNA geometry that is considered is shown in Fig. 2. This

choice is based on the spin-labeled DNA samples synthesized

in the lab of Sigurdsson7,15 and studied extensively using

PELDOR by Prisner and coworkers.39,40 The figure shows

an ideal B-DNA with two simultaneously present spin labels.

Denoting the position of the spin label on top by 1 and

counting the number of base pairs going down show that the

other spin label is at position 5. This labeling is therefore

referred to as DNA(1,5), following the nomenclature in ref. 40.

The spin–spin distances in ref. 39 and 40 were intended to be

measured by PELDOR; therefore the spin labels were placed

at distances larger than 20 Å starting from DNA(1,5) and

going all the way to DNA(1,14). In contrast, we are interested

in assessing the effect of dipolar coupling at room temperature

in cw-ESR spectra, hence we look at labeling that places the

spin labels in closer proximity.

The DNA(1,3) and DNA(1,4) geometries are shown in

Fig. 3 for an ideal, double-helical B-DNA. Although four spin

labels are shown at the same time, the two pairs are intended

to be present one at a time. In the (1,3) labeling each of the two

spin labels is placed on a different DNA strand such that there

is a single base pair separating them. In the (1,4) labeling the

spin labels are again on different strands but there are two base

pairs between them. In the case of DNA(1,5), the two spin

labels bracket three base pairs, as is clearly visible in Fig. 2.

By convention, the z axes of the magnetic tensors (frames Na)

are chosen to be perpendicular to the rings of the nitroxides. For

the DNA molecules, we choose the z axis of M to be along the

helix axis. As evident from Fig. 2 and 3, the spin labels are

attached to the DNA such that the z axes of N1 and N2 are

aligned with the z axis of M. (The deviations are about 51 for the

models shown.) In contrast to the preserved alignment of the

z axes, the relative orientation of the two frames N1 and N2

changes when going fromDNA(1,3) to DNA(1,4) and DNA(1,5).

Table 1 shows the distances between the nitrogen (N) and

oxygen (O) atoms of the two spin labels for the three labeling

schemes that we consider in this paper. As discussed above, all

the four distances are used to calculate the dipolar coupling for

a given pair of spin labels. (In fact, what is used are the four

different vectors r and not only the magnitudes |r| reported in

Table 1.) As expected, going from DNA(1,3) to DNA(1,4) and

DNA(1,5) results in larger separation between the two labels.

Interestingly, for all the three geometries, the separation

between the two electrons in the transverse plane is almost

equal to the vertical separation, as reflected by the fact that the

ratio presented in the last column of Table 1 is very close to 1.

C. DNA tumbling and stretching dynamics

To a first approximation, in the spectral simulations of Section

IV, we neglect the internal flexibility of the spin labels and the

DNA molecule, and consider only the tumbling of the latter.

For the model shown in Fig. 1 this corresponds to keeping

RMN1, RMN2 and the components of the vectors r with respect

to M fixed in time while changing RLM stochastically. On the

Fig. 1 A motional model for a flexible macromolecule (M) labeled

simultaneously with two spin labels (N1,2) and tumbling freely in

solution. The vector r, pointing from one of the unpaired electrons

to the other, as well as the orientations of the frames Na with respect to

M are affected by the internal molecular dynamics.

Fig. 2 A view of the double-helical B-DNA showing the elongated

shape of the molecule and the relative disposition of the two spin labels

at positions 1 and 5 labeling two different strands.
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basis of physical expectation that rotation about the helix axis

of the 20 base-pair DNA seen in Fig. 2 is much faster than

rotation about the other two axes perpendicular to the helix

axis, in Section IV we choose an axial diffusion tensor with

Dzz 4 Dxx = Dyy to model the DNA tumbling in solution.

The prescription that we follow to generate random

trajectories of RLM corresponding to free, anisotropic rotational

diffusion was presented elsewhere.33 For details, the reader

should consult this reference. Here we only mention that

trajectories are initiated from ‘freN’ points corresponding to

different initial orientations of the frames M and L. Rather

than being randomly chosen, the starting orientations are

generated such that they cover the surface of a sphere as

homogeneously as possible.43

Any internal DNA dynamics renders the transformation

matrices RMNa and the vectors r time dependent. In Section IV,

we examine the effect that longitudinal DNA stretching has on

the cw-ESR spectra of DNA(1,3) and DNA(1,4). The model

that we use to account for DNA stretching dynamics is

extremely simplified. It consists of changing the rz components

of the inter-spin-label vectors r in a stochastic fashion, while

keeping the other two components as well as the orientations

of the magnetic tensors with respect to the DNA frame M

unchanged. Clearly, any twisting of the DNA due to its

stretching—to be reflected by the additional modulation of

the orientation of the magnetic frames Na with respect to

M—is not accounted for. Similarly, no attempt has been made

to model DNA bending.

In the numerical implementation of the stretching dynamics

we assume that rz undergoes diffusive motion in the harmonic

potential u(rz) = k(rz � %rz)
2/2, which has been normalized by

the thermal energy scale. As a result, rz is Gaussian-distributed

around %rz with probability distribution proportional to

exp[�(rz � %rz)
2/(2s2z)], where s2z = 1/k. The values %rz are

determined from the structural models in Fig. 2 and 3. In

the simulations of Section IVC we use the sz values given in

Table 1, which are chosen to be about 20% of the average

distance between the two spin labels.

At the beginning of each stochastic trajectory, the starting

values of rz are randomly chosen from the Gaussian distribution

specified above. For a finite time step h, increments of rz are

generated according to

Drz ¼ �
Dzh

s2z
ðrz � �rzÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2Dzh

p
X; ð51Þ

where X is a Gaussian random variable with zero mean and

unit standard deviation. In addition to reproducing the correct

equilibrium probability distribution, eqn (51) also introduces

relaxation dynamics on a range of time scales determined by

the stretching diffusion constant Dz. The slowest relaxation

time scale is equal to s2z/Dz. For the choice of Dz = 1 Å2 ns�1

and the values of sz from Table 1, the slowest relaxation time

scales for DNA(1,3) and DNA(1,4) are 4 and 10 ns, respectively.

Decreasing the diffusion rate toDz = 0.25 Å2 ns�1 slows down

the stretching dynamics by a factor of four.

A total of ‘rstN’ different initial rz values are drawn, each

one starting a new independent trajectory. When combined

with the different starting conditions for the tumbling, this

leads to freN � rstN trajectories generated in total for the

simulation of a single spectrum. Each trajectory is propagated

for ‘stpN’ integration steps (see Table 2). A single step spans

h units of time.

IV. Illustrative spectral simulations

All the spectra reported in this section were simulated using

the following magnetic tensors

gN = diag(2.0078, 2.0058, 2.0022),

AN = diag(6.2, 6.2, 35.6) Gauss. (52)

These values, typical for nitroxides, should not be taken as

definitive since there has not been a systematic effort to

Table 1 The O–O, N–N, N–O, and O–N distances (Å) between the
two spin labels and their average calculated from the molecular model
of the indicated labeling scheme. The last column shows the ratio of
the components of the average unit vector�r(�r

2
> =�r

2
x+�r

2
y) and sz (Å) is

the width of the Gaussian distribution of rz used to model DNA
stretching

Labeling O–O N–N O–N N–O Avg. sz �r> :�rz

(1,3) 10.8 9.46 10.1 10.1 10.1 2.0 0.71 : 0.71
(1,4) 16.6 14.9 15.8 15.8 15.8 3.2 0.75 : 0.67
(1,5) 22.2 20.1 21.1 21.1 21.1 4.2 0.72 : 0.70

Table 2 Parameters used in the simulation of the X- and W-band
spectra in Fig. 4–8. The components of the diagonal diffusion tensor
are in units of 106 s�1

B0/T Dxx, Dyy, Dzz h/ns stpN freN rstN bL/G

0.3485 10, 10, 40 1.0 300 6400 16 0.6
3.4 10, 10, 40 0.45 200 6400 64 1.2

Fig. 3 Geometry of the (1,3) (black) and (1,4) (blue) pairs of spin

labels on an ideal double-helical B-DNA. The two partners in a pair

are on different strands. The view is down the helix axis. Only the

atoms on the spin label which are not part of the cytosine atoms are

highlighted.
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determine them unambiguously. Only Azz was changed manually

to match the width of the experimental spectrum shown in

Fig. 4.

Details about the exact calculation of the spectrum from the

simulated decay of the transverse magnetization can be found

elsewhere.33 Suffice it to say that Lorentzian spectral broadening,

to be denoted by bL when given in units of magnetic field, was

included to mimic additional relaxation effects not related to

the molecular motion (cf. Table 2).

A. Anisotropic tumbling of a rigid DNA

To make sure that the magnetic tensors and the global

diffusion tensor employed in the spectral simulations are

plausible, in Fig. 4 we compare the room-temperature X-band

spectrum of DNA(1,5)—the only experimental spectrum presently

available—with a spectrum simulated using the parameters in

the first row of Table 2. The sharp features in the experimental

spectrum at about �16 G presumably reflect the presence of

free spin label in solution. Naturally, these are not captured by

the simulated spectrum. Otherwise, the two spectra are seen to

be in surprisingly good agreement, which is sufficient for the

illustrative purposes of the present paper.

Certainly, any systematic characterization of the magnetic

and motional parameters—not attempted here—will require

complementary spectral information from frozen samples and

measurements at higher magnetic fields. (The utility of the

high-field measurements to nail down the motional parameters

will become clear below.) Therefore, the values of the Zeeman

and hyperfine tensors (52) as well as the diffusion tensor in

Table 2 should not be taken as definitive. As we will see

shortly, the single experimental spectrum shown in Fig. 4 is

not sufficient to uniquely determine the components of the

diffusion tensor. Nevertheless, the experiment serves as a

reference point for gauging the changes in the spectra that

result from changing the parameters of the motional model

and including dipolar interaction.

Having gained confidence that the magnetic and motional

parameters, although not definitive, are at least representative

of the system at hand, we proceed with the main interest of the

present work: assessing the potential of probing global and

local DNA dynamics through cw-ESR spectra of DNA(1,4)

and DNA(1,3) samples.

To this end, X- and W-band cw-ESR spectra for rigid

DNA(1,5), DNA(1,4) and DNA(1,3) freely tumbling in solution

were simulated (see Fig. 5). Going from DNA(1,5) to

DNA(1,4) the average distance between the two unpaired

electrons decreases from B21 Å to B16 Å (Table 1). The

resulting changes in the X- and W-band spectra, although not

dramatic, are sufficient to differentiate between the two cases.

Since the average electron–electron distance goes down to

B10 Å for DNA(1,3), both the X- and W-band spectra are

drastically different from the spectra of DNA(1,4) and

DNA(1,5). We may therefore expect that the DNA(1,3) system

will be most effective in reporting differences in the local DNA

dynamics.

To examine whether the DNA(1,5) spectra reflect the

presence of dipolar coupling at all, in Fig. 5 we have super-

imposed them with spectra of a single nitroxide simulated

using exactly the same simulation parameters. The central line

in the X-band spectrum of the single spin label is seen to be

slightly narrower, revealing the additional broadening in the

spectrum of DNA(1,5) due to the dipolar interaction of the

two labels. Since the spectral lines of the W-band spectrum are

much broader, the effect of dipolar coupling is invisible at

this magnetic field. Therefore, any structural or dynamical

information that could potentially be reported exclusively by

the dipolar coupling should be sought in the spectra of

DNA(1,4) and especially DNA(1,3).

A feeling for the increased computational demands in going

from a single to two coupled nitroxides can be obtained by

comparing the simulation times for the spectra of a single

nitroxide and DNA(1,5) shown in Fig. 5. The X- and W-band

Fig. 4 Experimental (thick red) and simulated (thin black) spectra

for DNA(1,5) at B0 = 0.3485 T. The DNA was assumed to be rigid

and tumble with an anisotropic diffusion tensor.

Fig. 5 Simulated spectra at (a) B0 = 0.3485 T and (b) B0 = 3.4 T for

DNA(1,5) (top), DNA(1,4) (middle), and DNA(1,3) (bottom). The

spectra are shifted in the vertical direction for visual purposes. The

spectra (thin blue lines) superimposed on the DNA(1,5) spectra at

the X- and W-band correspond to simulations with a single nitroxide.
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spectra of the former were simulated in 2 min 26 s and 6 min 27 s,

respectively, whereas the latter were simulated in 2 h 23 min

and 6 h 22 min on a single 2.2 GHz CPU. Clearly, working

in the larger dimensional Hilbert space of four spins is

computationally much more demanding.

The sensitivity of the cw-ESR spectra to the global diffusion

tensor is studied in Fig. 6 and 7. The spectral changes

associated with diffusion around the helix axis (component

Dzz) are illustrated in Fig. 6, where the isotropic diffusion

tensor D = diag(10,10,10) � 106 s�1 was employed. The

X-band spectra are seen to be essentially insensitive to the

imposed four-fold change in Dzz from 40 to 10 (Fig. 6a).

From that perspective, as already alluded to, the choice

Dzz = 40 � 106 s�1 to compare with the experimental

spectrum in Fig. 4 is largely arbitrary. We might as well have

taken an isotropic diffusion tensor. However, the extended

cylindrical shape of the B-DNA argues against isotropic

diffusion. In contrast, the simulated spectra in Fig. 6b demon-

strate that measurements at the W-band are very sensitive to

changes in Dzz and should be used in order to determine this

component unambiguously.

In Fig. 7 we examine the sensitivity of the spectra to the

length of the DNA helix. Reducing the number of base pairs in

the B-DNA helix is expected to lead to faster diffusion about

the axes perpendicular to the helix axis, resulting in larger

Dxx = Dyy values. Thus, the spectra in Fig. 7 simulated using

D = diag(25,25,40) � 106 s�1 correspond to a shorter helix.

The extreme sensitivity of X-band measurements to this mode

of transverse diffusion is clearly visible in Fig. 7a. Thus,

X-band spectra are good reporter of the length of the

B-DNA helix. Although the changes in the W-band spectra

in Fig. 7b are less pronounced than the changes seen in Fig. 6b,

if available, such high-field measurements clearly provide

additional constraints on the values of Dxx = Dyy.

Taken together, the presented spectral simulations of the

rigid DNA systems undergoing anisotropic tumbling show

that a comparative multifrequency study of DNA(1,5), DNA(1,4)

and DNA(1,3) samples is expected to be very informative about

the rigid-body DNA dynamics in solution.

B. Testing the approximate spectral simulations

The approximation of weak dipolar coupling is routinely used

in the quantitative analysis of DEER (PELDOR) time traces,

where it is completely justified.18,29 However, its range of

validity has to be ensured before it is used to simulate

cw-ESR spectra. Here we test this approximation together

with the alternative approximation from Section IID2, in

which the separable forms of the density matrices were

imposed [cf. eqn (40)–(42)].

In Fig. 8, the approximate X- and W-band spectra simulated

using the parameters in Table 2 are compared with the exact

simulations from Fig. 5. Both approximations show very good

agreement with the X- and W-band spectra of DNA(1,5). For

this labeling geometry, however, the effect of dipolar coupling

is negligibly small to begin with, as was already demonstrated.

Hence, the good performance of the tested approximations for

DNA(1,5) is not very informative.

At the X-band the weak-coupling approximation starts

failing already for DNA(1,4) producing narrower spectral

lines as a result of insufficient mixing of the nuclear spin

states. Its performance is miserable for DNA(1,3). The

approximation of separable matrices does a consistently better

job—it is extremely good for DNA(1,4) but fails as well for

Fig. 6 Simulated (a) X-band and (b) W-band spectra for isotropic

tumbling with a diffusion tensor of D= diag(10,10,10) � 106 s�1 (thin

blue) superimposed on the anisotropic spectra (thick black) in Fig. 5.

Fig. 7 Same as Fig. 6 for a shorter B-DNA with an anisotropic

diffusion tensor of D = diag(25,25,40) � 106 s�1.
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DNA(1,3). At the W-band, where the spectral lines are

broader, the two approximations are seen to work well for

DNA(1,4). The weak-coupling approximation fails for DNA(1,3)

whereas the other approximation is still rather good.

Due to the significant speed-up achieved by the two approx-

imate simulation schemes (11 min 38 s and 22 min 11 s,

respectively, vs. 6 h 22 min for the exact treatment on a single

2.2 GHz CPU for the W-band spectra of DNA(1,5) in Fig. 8b)

they offer an attractive alternative for the simulation of

dipolar-broadened spectra from spin labels that are sufficiently

far apart, and can be used for fast preliminary screening of the

simulation parameters.

C. Anisotropic tumbling with internal flexibility

Our final analysis is concerned with the influence of the

stretching mode of the DNA helix on the cw-ESR spectra.

For the illustrative purposes of the present study, the internal

flexibility associated with stretching was modeled in a simplified

manner as discussed in Section IIIC. The centers and widths of

the Gaussian distributions in rz are as given in the ‘avg.’ and

‘sz’ columns of Table 1. To prevent large changes in the value

of rz during one integration time step with the chosen diffusion

constants Dz = 0.25 Å2 ns�1 and Dz = 1 Å2 ns�1, the value of

h was reduced to 0.3 ns for both the X-band and W-band

simulations. Trajectory lengths identical to the ones used for

all other reported spectra were achieved by increasing the

integration steps for a single trajectory, ‘stpN’, to 1000 and

300, respectively, at the X- and W-band (cf. Table 2). The

other simulation parameters, including the components of the

anisotropic diffusion tensor, were the same as the ones given in

Table 2. The resulting spectra are shown in Fig. 9.

From the figure, it is apparent that at the X-band the

DNA(1,4) spectrum is not sensitive enough to reflect the

presence of the modeled stretching dynamics with the assumed

distribution width of sz = 3.2 Å. Although the spectrum

shown at the top of Fig. 9a is for Dz = 0.25 Å2 ns�1,

increasing the time scale of the internal dynamics by a factor

of four (Dz = 1 Å2 ns�1) resulted in an essentially identical

spectrum (not shown). For the W-band spectrum of

DNA(1,4) shown at the top of Fig. 9b, small differences

between the spectra simulated without internal stretching

dynamics and with Dz = 0.25 Å2 ns�1 are present in the

lower-field, gxx region of the spectrum. The deviations between

the two spectra were even less visible for Dz = 1 Å2 ns�1 (not

shown). In summary, we conclude that both X-band and

W-band spectra of the DNA(1,4) system are not affected

significantly by the presence of the assumed internal stretching

dynamics.

In contrast, for DNA(1,3) both the X- and W-band

spectra change substantially upon introducing the internal

stretching motion on top of the global anisotropic tumbling.

The dramatic differences between the spectra simulated

without and with internal stretching using sz = 2 Å and

Dz = 0.25 Å2 ns�1 suggested the possibility that one might be

able to detect not only the presence of stretching fluctuations

but also the time scale of these excursions. Indeed, as

evidenced by the X-band spectra at the lower part of

Fig. 9a, four times faster stretching dynamics (Dz = 1 Å2 ns�1)

resulted in a spectrum significantly different than both other

spectra. The W-band spectrum, on the other hand, appears

not to allow access to the time scale of stretching, at least

within the examined time window. Overall, the DNA(1,3) sample

emerges as a promising candidate for probing local DNA

dynamics.

Fig. 8 Comparison of the exact simulations in Fig. 5 (thick black),

and the approximations of weak dipolar coupling (red) and separable

matrices (blue). The latter approximation is consistently better than

the former.

Fig. 9 X-band (a) and W-band (b) spectra of DNA(1,4) (top) and

DNA(1,3) (bottom) without (thick black) and with internal stretching

dynamics using Dz = 0.25 Å2 ns�1 (thin blue) and Dz = 1 Å2 ns�1

(thin red).
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V. Conclusion

An efficient numerical integrator for the simulation of cw-ESR

spectra of two dipolar-coupled nitroxides from trajectories

was presented. By invoking the high-field approximation it

was possible to reduce the computational effort of evolving the

density matrix of the four coupled spins—two electron and

two nuclear—by propagating only the sectors of the density

matrix accessible to cw-ESR measurements. Nevertheless, the

calculations were still a factor of B50 more costly than the

simulation of the spectrum of a single nitroxide. To further

reduce the simulation time, two approximate treatments

of the dipolar evolution were considered. The first one—the

approximation of weak dipolar coupling—is well known and

routinely used in the simulation of DEER (PELDOR) time

traces. The second approximation, based on projecting the full

density matrix to the Hilbert spaces of the separate nitroxides

after every step of dipolar evolution, appears to be novel. In

the tests that were conducted we observed that the weak-

coupling approximation worked only when the dipolar-coupling

had almost no effect on the cw-ESR spectra (spin-label

distance in the range of 20 Å). In contrast, the other approx-

imation was perfect for distances down to 15 Å. When the

separation was 10 Å, it produced a goodW-band spectrum but

failed at the X-band. Therefore, by employing the approximation

proposed here, a factor of 20 speed-up can be achieved for

spin-label separation of Z 15 Å. For shorter distances, the

exact simulation has to be employed.

The developed simulation approach was used to explore

whether 20 base-pair, double-helical, B-form DNA samples,

containing two spin labels that bracket either one (DNA(1,3))

or two (DNA(1,4)) base pairs, can be used to access global and

local DNA dynamics at room temperature. Our calculations

of dipolar-broadened cw-ESR spectra for rigid DNA tumbling

freely in solution indicated that a multifrequency study with

such samples should be very informative about the anisotropic

diffusion tensor of DNA. The spectra simulated by including

idealized stretching dynamics suggested that using the

DNA(1,3) sample it should be possible to detect differences

in local DNA flexibility and dynamics due to, for example,

different base-pair combinations bracketed between the two

spin labels. Such studies with doubly-labeled DNA are

expected to provide complementary information to the existing

cw-ESR characterization of DNA dynamics from singly-labeled

DNA samples.11–14,44,45

Modeling DNA stretching by a separate stochastic process

that influences the spin label separation together with the

anisotropic rotational diffusion of the whole molecule is

intended to exemplify the virtually unlimited possibilities for

including global and internal dynamics in a motional scheme

like the one shown in Fig. 1. Such versatility results from the

highly modular nature of the developed simulation approach

based on stochastic trajectories of the motional models. The

C++ routines used to simulate the reported spectra are freely

available from the web page of the corresponding author.

Admittedly, here we have made no effort for complete

modeling of the rich DNA dynamics, which in addition to

stretching includes bending, twisting as well as coupling

between the various modes. Generating trajectories of such

complex motions necessitates a coarse-grained but sufficiently

realistic representation of DNA flexibility, the development

and testing of which is a separate endeavor. The sensitivity of

the multifrequency DNA(1,3) and DNA(1,4) spectra to such

rich atomic-level motions, therefore, remains to be examined.

There is no doubt, however, that the atomic-level information

contained in such spectra will be subject to quantitative

interpretation in the very near future. In fact, the computa-

tional investigation presented in this paper has provided a

strong motivation to synthesize the doubly-labeled DNA

samples with the purpose of performing the cw-ESR experiments

that will test the theoretical predictions. The outcomes of this

joint experimental–computational analysis will be reported in

due course.
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