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ABSTRACT

Previously, we developed the deoxycytosine analog
Ç (C-spin) as a bi-functional spectroscopic probe for
the study of nucleic acid structure and dynamics
using electron paramagnetic resonance (EPR) and
fluorescence spectroscopy. To understand the
effect of Ç on nucleic acid structure, we undertook
a detailed crystallographic analysis. A 1.7 Å reso-
lution crystal structure of Ç within a decamer
duplex A-form DNA confirmed that Ç forms a
non-perturbing base pair with deoxyguanosine, as
designed. In the context of double-stranded DNA Ç
adopted a planar conformation. In contrast, a
crystal structure of the free spin-labeled base ç dis-
played a �20� bend at the oxazine linkage. Density
function theory calculations revealed that the bent
and planar conformations are close in energy and
exhibit the same frequency for bending. These
results indicate a small degree of flexibility around
the oxazine linkage, which may be a consequence of
the antiaromaticity of a 16-n electron ring system.
Within DNA, the amplitude of the bending motion
is restricted, presumably due to base-stacking inter-
actions. This structural analysis shows that the Ç
forms a planar, structurally non-perturbing base
pair with G indicating it can be used with high con-
fidence in EPR- or fluorescence-based structural
and dynamics studies.

INTRODUCTION

Interconnected with the central importance of the macro-
molecular structural scaffold, the dynamics or movements

of structural elements play a key role in all biological
processes. Electron paramagnetic resonance (EPR) spec-
troscopy can provide information on both the dynamics as
well as the global structure of biological molecules (1–4).
For such studies on nucleic acids, several nitroxide spin
labels have been developed (5–11). Most of these reporters
contain flexible linkers with one or more rotatable bonds
between the nitroxide spin label and the nucleic acid.
Flexible linkers introduce uncertainty in the measurement
of dynamics, or determination of distances between
two nitroxide spin labels due to movement of the probe
independent of the nucleic acid. Therefore, we designed
and synthesized the rigid nitroxide spin-labeled cytidine
analog Ç (C-spin) for use in studies of the structure and
dynamics of nucleic acids by EPR spectroscopy (12). The
nitroxide moiety of this reporter can be reduced with a
mild reducing reagent such as sodium sulfide (Na2S) to
produce a fluorescent nucleoside (Çf), which was used
for detection of mismatches in DNA (13,14). Therefore,
both EPR and fluorescence spectroscopies can be used
with the same spectroscopic label as illustrated in folding
studies of the cocaine DNA aptamer (15) and dynamics
of DNA hairpin loops (16). Pulsed electron–electron
double resonance (PELDOR) has also been used to deter-
mine precise distances and angular orientations within
Ç-labeled DNAs (17,18). Thus, this bi-functional
reporter allows for the study of nucleic acid structure
and dynamics via the complementary spectroscopic tech-
niques of fluorescence and EPR.
As with any reporter group used in biophysical experi-

ments, it is important that the probe does not perturb the
structure of the biological system of interest. If the
reporter group is structurally perturbing, the results
obtained from biophysical experiments would falsely
report the nature of the macromolecule. Therefore, the
effect of the reporter on the structure of the biopolymer
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must be carefully analyzed. Despite the widespread use of
spectroscopic probes in biophysical studies, there are very
few crystal structures containing covalently bound spec-
troscopic probes aside from 2-aminopurine for nucleic
acids (19–21) and nitroxide spin labels for proteins
(22–25). Obtaining a high-resolution crystal structure of
a nucleic acid containing a spectroscopic probe remains
challenging, and thus most researchers have relied on a
variety of biophysical techniques to provide indirect
evidence as to whether or not a probe alters the structure
of the macromolecule of interest. For example, melting
temperature analysis of DNAs containing Ç showed
only subtle changes in the melting temperatures relative
to unlabeled DNAs (16). In addition, EPR studies of
dynamics (12,16) and distance measurements (18)
aligned well with predicted models. Despite these
encouraging biophysical data, no direct structural
evidence exists to demonstrate whether or not the
reporter Ç is structurally perturbing, forms a proper
base pair with deoxyguanosine and what may be the
preferred conformation. Furthermore, one concern with
regards to the structure of the spin-labeled nucleoside
was the fact that the phenoxazine-derived nucleobase
contains 16 p-electrons. This number of electrons in a
cyclic p-system indicates antiaromaticity, which could
result in non-planarity of the ring system. Because a
bend in the nucleobase might affect the use of this probe
for biophysical studies, we undertook a detailed analysis
of its high-resolution structure.
Here we report a detailed crystallographic characteriza-

tion of Ç. This analysis includes small molecule crystal
structures of the ç nucleobase, which has been used for
non-covalent spin labeling of nucleic acids containing an
abasic site (26), and its phenoxazine analog (1) (Figure 1)
as well as a 1.7 Å resolution crystal structure of a decamer
DNA duplex containing Ç. The high-resolution nucleic
acid structure demonstrates that within the context of
the nucleic acid, the nitroxide spin label Ç adopts a
planar conformation while forming a standard three
hydrogen bond base pair with deoxyguanosine.

These results validate the interpretation of distance and
orientation measurements between two Ç reporters
described previously and provide the basis for further
structural and dynamics studies on oligonucleotides with
unknown folds.

MATERIALS AND METHODS

Small molecule crystallization and structure determination

The nitroxide spin-labeled nucleobase ç was prepared as
previously described (26), and the synthesis of
phenoxazine 1 is described in the Supplementary Data.
Yellow crystals of the ç spin label were obtained by slow
evaporation from ethanol. Yellowish-brown crystals of
1 were obtained by slow evaporation from 3:1
dichloromethane:methanol solution. Crystals of ç and 1
were mounted on a Rigaku MM007/Mercury X-ray dif-
fractometer (confocal optics Mo Ka radiation, 0.71073 Å).
X-ray diffraction experiments were performed at 93K.
Intensity data were collected using accumulated area
detector frames spanning at least a hemisphere of recipro-
cal space for all structures. Data were integrated using
Crystal Clear. All data were corrected for Lorentz, polar-
ization and long-term intensity fluctuations. Absorption
effects were corrected on the basis of multiple equivalent
reflections. The structures were solved by direct methods.
Hydrogen atoms bound to carbon were idealized.
Structural refinements were obtained with full-matrix
least-squares based on F2 by using the program
SHELXTL (27). The theta(max) resolution of the small
molecule structure of 1 was 27.52 and the theta(max) reso-
lution of the small molecule structure of ç was 25.3.

Density function theory calculations

Density function theory (DFT) calculations on the
spin-labeled nucleobase ç were performed with the
B3LYP functional, the 6-31G* basis set and unrestricted
spin-wave functions using Gaussian03 (28). To obtain a
geometry optimized structure and single point energy for
the bent spin label, the atoms of the spin label’s
phenoxazine moiety were frozen to the position obtained
from the small molecule crystal structure and hydrogen
atoms were added to the vacant positions. The constraints
on the phenoxazine moiety were then relaxed to obtain the
energy optimized structure and single point energy of the
unbent spin label. The vibrational frequencies for both
geometry-optimized structures were all positive, indicating
the structures represent an energy minimum. The single
point energy for the bent and planar spin label was
�2 795 044.283 kJ/mol and �2 795 045.594 kJ/mol respect-
ively. The unbent structure is 1.31 kJ/mol less in energy.
The frequency for the bending motion around the oxazine
linkage is 18.8 and 28.3 cm-1 for the planar and the bent
conformation, respectively.

DNA crystallization and structure determination

A 10nt-long DNA containing Ç at position 2 and 20-O-
methyl U at position 6 (Figure 1b) was prepared
via solid-phase chemical synthesis as described

Figure 1. (a) Structures of phenoxazine-derived nitroxide spin labels Ç

and ç, and the unmodified phenoxazine derivative 1. The spin labels are
shown base-paired with guanine (G), with hydrogen bonds indicated by
dashed lines (b) Sequence and secondary structure of the duplex DNA
used to obtain a high-resolution crystal structure of a Ç-containing
DNA helix. dR=20-deoxyribose. 20OMeU=20-O-methyluridine.
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previously (12,16). The decamer duplex DNA sample con-
taining the nitroxide spin-labeled nucleotide Ç was
crystallized as described for a similar phenoxazine-
containing cytosine analog (29). Crystals were grown at
16�C using the sitting drop vapor diffusion method from
0.4 ml of DNA (2.4mM) mixed with 0.4ml of 10% (±)-
2-methane-2,4-pentanediol (MPD), 40mM sodium caco-
dylate pH 6.0, 12mM spermine·HCl, 80mM NaCl,
12mM KCl, 12mM MgCl2 and equilibrated against a res-
ervoir of 35% MPD. Crystals of the 10 nt-long DNA con-
taining 20-O-methyl U and Ç grew over several months.
Most crystals grew as clusters, although one drop con-
tained two single crystals (Supplementary Data). A
single crystal was vitrified by plunging into liquid
nitrogen and a data set was collected using a Rigaku
FR-E+ SuperBright rotating anode X-ray generator with
VariMax HF optics and a Saturn 944+CCD detector. The
crystal diffracted beyond the resolution limits of the detect-
or at the minimum detector distance (Supplementary
Data), and thus a 2y swing of �15� was used to enhance
the resolution limits given the in house X-ray system.
Nevertheless, the crystal diffracted beyond the resolution
limits of the in house X-ray detection system, as
determined by the strong signal in the highest resolution
bin (I/s=20; Table 1). The data were reduced with XDS
and XSCALE (30). The structure was solved by molecular
replacement using PHASER (31) from the CCP4 suite (32)
and contained two DNA molecules (i.e. a
self-complementary duplex) in the asymmetric unit. The
structure was refined with numerous reiterative rounds of
refinement in REFMAC (33) and manual building in Coot
(34). The final crystallographic model was produced after
two additional rounds of refinement in Phenix (35) which
utilized a CIF file containing the modified nucleotide
linkage definitions generated using the program Jligand
(G.N. Murshudov et al., unpublished data).

RESULTS AND DISCUSSION

Small molecule crystal structures were determined for the
ç nucleobase as well as the phenoxazine analog 1

(Figure 2a and Supplementary Data). The phenoxazine
nucleobase 1 adopts a planar conformation with almost
no bend at the oxazine linkage between the cytosine and
benzene rings (Figure 2a). In contrast, ç adopts a
non-planar geometry with a bend of �20� at the oxazine
linkage between the cytosine and benzene rings (Figure 2b
and Supplementary Data). In order to rationalize the con-
formational differences of the phenoxazine moiety, DFT
calculations have been performed on ç in the bent con-
formation as found in the small molecule crystal structure
and on ç in the planar conformation as found in the small
molecule crystal structure of 1. These calculations revealed
that the bent form is only 1.31 kJ/mol higher in energy
than the planar form and that all vibrational frequencies
for both conformations are positive. Thus, both conform-
ations are similar energy minima or might actually belong
to the same energy minimum. This is supported by the
finding that the frequencies for the bending motion
differ by only 10 cm�1 (18 and 28 cm�1 for the planar
and bent conformation, respectively). Taken together,
we interpret these results as both conformations belonging
to the same energy minimum with a low energy bending
motion around the oxazine linkage. Because bending the
phenoxazine moiety costs little energy, the surrounding
environment such as crystal packing can drive it into
either conformation. This raises the question as to
whether ç is bent or planar when incorporated into an
oligonucleotide structure. Thus, we proceeded to obtain
a high-resolution structure of a DNA containing Ç to es-
tablish the preferred conformation of Ç within the context
of a nucleic acid.

Figure 2. Small molecule crystal structures of (a) phenoxazine (1) and
(b) the nitroxide spin-labeled nucleobase ç.

Table 1. Crystallographic statistics for a DNA containing Ç

Space group P212121
Unit cell a=24.71 Å, b = 44.55 Å,

c = 45.94 Å; a = b = g = 90�

Vm 1.95 Å3/Daa

Solvent content 57.4%
Resolution 50–1.7 Å (1.74–1.70 Å)b

I/s 54.0 (20.0)
Completeness 94.3% (82.9%)
Rmerge 0.022 (0.070)
Multiplicity 8.4 (6.4)
Reflections 5613 (354)
Refinement

Rcryst 15.9% (0.138)
Rfree 19.5% (0.218)
Mean B-factor 14.5 Å2

Number of atoms
DNA 436
Solvent 83
Total 519

aMatthews co-efficient and solvent content calculated based on a pre-
dicted duplex DNA MW of 6494 Da.
bValues in parenthesis indicated highest of 20 resolution bins for data
reduction and highest of four resolution bins for refinement.
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Initially, we selected two previously reported duplex
DNA crystal forms, one A-form (36) and one B-form
(37), for incorporation of Ç and subsequent crystallo-
graphic structure determination. Each of these crystal
forms was chosen because it contained a cytosine resi-
due that in principle had sufficient space within the
crystal lattice to accommodate replacement with Ç. We
incorporated Ç at positions 4 or 6 of the self-
complementary octamer A-form duplex DNA as well as
position 9 of the self-complementary dodecamer B-form
duplex DNA. Despite producing large, well diffracting
crystals using unmodified DNA samples, we observed
only thin plate crystals that were unsuitable for structure
determination using DNA samples containing Ç (data not
shown). Therefore, we sought a different crystal form for
incorporation of Ç and structural characterization.
Egli et al. (38) reported crystal structures of an A-form

decamer DNA duplex with either cytosine or the
phenoxazine-derived cytosine analog ‘G-clamp’ (29).
These crystal structures contain a 20-O-methoxymethyl
T at position 6 that promotes formation of A-form
DNA in solution rather than B-form, which is standard
for DNA. To our knowledge, the 20-O-methoxymethyl T
phosphoramidite is not commercially available, and thus
we first produced crystals with a C at position 2 and a 20-
O-methyl U at position 6. These crystals diffracted X-rays
to better than 2.3 Å resolution in house (data not shown).

Next, a DNA sample was prepared with the nitroxide spin
label Ç incorporated into position 2 and a 20-O-methyl U
at position 6 (Figure 1b) and resulted in a crystal from
which we determined a 1.7 Å resolution crystal structure
(Figure 3, Table 1 and Supplementary Data). Crystals
suitable for structure determination failed to grow from
a sample containing Ç at position 2 with a dT at position 6
(i.e. no 20-O-methyl). EPR spectra of these two Ç-contain-
ing samples, one with a 20-O-methyl U at position 6 that
should be A-form in solution and one with a dT at
position 6 that should be B-form in solution, were found
to be nearly identical (Supplementary Data). Thus, there is
likely to be little difference in the mobility of the probe in
comparison of A- and B-form DNA in solution.
Inspection of the electron density maps from our 1.7 Å
resolution structure obtained from the DNA sample con-
taining Ç at position 2 and a 20-O-methyl U at position 6
clearly showed the 20-O-methyl group of U6 (Figure 3 and
Supplementary Data).

The 1.7 Å resolution crystal structure of the decamer
duplex DNA containing Ç at position 2 was initially
refined with an abasic site at this position. The resulting
omit |Fo|�|Fc| electron density map showed unambiguous
electron density for the Ç nucleobase (Figure 4a). The
simulated-annealing omit 2|Fo|�|Fc| electron density
map calculated with phases from the refined model was
of excellent quality and revealed unambiguously that Ç

Figure 3. Overall crystal structure of a DNA containing Ç. (a) Stick figure representation of an A-form duplex DNA crystal structure containing Ç

solved at 1.7 Å resolution. For clarity, Ç is shown in light blue carbon backbone and the remainder of the DNA is shown in gray carbon backbone.
(b) Final crystallographic model containing waters overlaid with the 2|Fo|�|Fc| electron density map shown in blue mesh and contoured at 1.0 s.
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forms a standard base pair with dG9 of the opposite
strand with three �2.8 Å long hydrogen bonds
(Figure 4b and c). The structure of the nucleic acid helix
containing Ç superimposes closely on a previously
reported structure containing a deoxycytidine residue at
this position (38) (Figure 5), indicating that Ç does not
perturb the DNA structure relative to a standard
deoxycytidine residue. EPR spectroscopic analysis
showed that Ç had decreased mobility in duplex DNA
relative to single-stranded (12,16) or bulged (39) sites
and could be used to measure single strand to duplex tran-
sitions during folding (15), implying Ç forms a base pair
with dG. Furthermore, thermal denaturation experiments
showed that the Ç�dG pairing had a similar melting tem-
perature to a dC�dG pair, but showed a decrease in the
melting temperature of 10–15�C when Ç was paired with
dA, dT or dC (12). Combined with the EPR spectroscopy
and thermal denaturation results, the high-resolution
crystal structure described here shows that Ç is a
non-perturbing cytosine analog that forms a Watson–
Crick base pair with dG as designed.
The crystal structure shows that within the context of a

nucleic acid, Ç adopts a planar geometry (Figure 4b)
rather than the bent geometry observed in the crystal
structure of ç (Figure 2b). At the oxazine linkage, N4 of
Ç is involved in a 2.9 Å hydrogen bond with dG9 of the
opposite strand and O5 does not form hydrogen bonds
with any water molecules, but rather packs 3.7 Å away
from O2P of the Ç phosphate and also C30 of residue
G1. This is similar to what was observed for the small
molecule crystal structure of phenoxazine 1 alone or the
phenoxazine-derived ‘G-clamp’ modified nucleoside (29).
At the current resolution limits, no water-mediated inter-
actions were observed off the nitroxide of Ç in the major
groove. However, if one extends the model 50 of dG1, it is
possible that the nitroxide could make water mediate
mediated interactions with the phosphate or base two
residues away on the 50 side of Ç. If that residue were a
purine, we speculate that additional packing interactions

Figure 4. Examination of the nitroxide spin-labeled nucleotide Ç

within the high-resolution DNA crystal structure. (a) Side- and
top-down views of Ç superimposed with the |Fo|�|Fc| omit electron
density map shown in green mesh contoured at 3.0 s. (b) Side view
of Ç superimposed with the 2|Fo|�|Fc| electron density map, shown in
blue mesh contoured at 1.0 s. (c) Top-down view of the base pair
formed by deoxyguanosine and Ç superimposed with the 2|Fo|�|Fc|
electron density map shown in blue mesh contoured at 1.0 s.
Hydrogen bonds are depicted as dashed lines.

Figure 5. Overlay of the 1.7 Å resolution crystal structure of a DNA
containing the nitroxide spin-labeled deoxycytosine analog Ç (gray
carbon backbone) with a crystal structure containing deoxycytosine
at the same position (PDB ID 1DPL, green carbon backbone) (38).
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may be observed with the nitroxide ring. Interestingly,
examination of the high-resolution DNA crystal structure
shows that the average B-factor of the pyrimidine ring
(12.9 Å2) is lower than either the benzene ring (19.3 Å2)
or the nitroxide ring (25.2 Å2). This demonstrates greater
static or dynamic disorder of the nitroxide ring relative to
the pyrimidine ring, which could be reflective of the
bending motion observed in DFT calculations for the
free label ç. Alternatively, the increased B-factors could
be reflective of rigid body motion of the entire nucleobase
relative to the sugar-phosphate backbone. Nevertheless,
the preferred conformation of the nucleobase of Ç in
DNA is planar; the amplitude of the bending motion is
clearly more restricted within the DNA duplex than
observed in the crystal structure of the free label ç, pre-
sumably due to the benefit of van der Waals packing inter-
actions with the 50 deoxyguanosine base (Supplementary
Data and below). Although the phenoxazine ring system is
formally antiaromatic, it has been shown with 20 and 24 p
electron N,N-dihydrodiazatetracenes by X-ray crystallog-
raphy, cyclic voltammetry and nucleus independent
chemical shift calculations that they have reduced aroma-
ticity, rather than antiaromaticity (40).
Crystal structures with other phenoxazine-containing

compounds include those of the antibiotic actinomycin,
which reveal a slight bend at the oxazine linkage (41),
and of actinomycin bound to DNA which reveal a
planar conformation of the phenoxazine moiety (42–44).
We note that there is significant p-stacking interaction
of the phenoxazine component of Ç with dG1
(Supplementary Data), as was observed in the G-clamp
crystal structure (29) and is consistent with p-stacking in
the actinomycin-DNA crystal structures (42–44).
Previously, we examined the melting temperature of a
series of DNAs to determine the effect of Ç, and in
some cases, a +5�C shift in the melting temperature of
duplex DNAs containing Ç has been observed (16),
which could be consistent with the p-stacking observed
in the crystal structure presented here and with other
phenothiazine- and phenoxazine-labeled DNA structures
(45,46). Increased melting temperatures do not necessarily
correlate with p-stacking, but could be due to simple van
der Waals packing as observed in crystal structures of a
modified deoxycytosine base with a non-aromatic two-
ring system (47). Given that the antibiotic actinomycin
and ç/Ç are both observed in planar and bent forms and
our DFT calculations show that the bent and planar con-
formations of ç are similar in energy and frequency, we
predict that other phenoxazine-derived molecules would
exhibit a similar general pattern. In summary, the
high-resolution crystal structure of a DNA containing Ç
showed that the spin label adopts a planar geometry with
indicators of modest mobility at the oxazine ring, consist-
ent with small molecule crystal structures, DFT geometry
calculations and previously published crystal structures of
molecules containing phenoxazine-based compounds,
such as actinomycin.
Only a handful of crystal structures of biological macro-

molecules containing spectroscopic probes have hitherto
been reported. We have performed a detailed crys-
tallographic analysis of the nitroxide spin-labeled

deoxycytosine analog Ç. Consistent with previous EPR
and fluorescence spectroscopic and thermal stability
results, the results presented here demonstrate that Ç is
a non-perturbing cytosine analog that forms a Watson–
Crick base pair with dG. These results increase the
accuracy and interpretation of distance and orientation
measurements made with this spectroscopic probe and
provide a benchmark for structural characterization of
spectroscopic probes.
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