
Chapter 8

Site-Directed Spin Labeling for EPR Studies

of Nucleic Acids

Sandip A. Shelke and Snorri Th. Sigurdsson

Abstract Electron paramagnetic resonance (EPR) spectroscopy has emerged as a

valuable technique to study the structure and dynamics of nucleic acids and their

complexes with other biomolecules. EPR studies require incorporation of stable

free radicals (spin labels), usually aminoxyl radicals (nitroxides), at specific sites in

the nucleic acids using site-directed spin labeling (SDSL). In addition to the

advancement of EPR instrumentation and pulsed EPR techniques, new strategies

for SDSL have emerged, in particular, use of click chemistry, biopolymer catalysis,

and noncovalent labeling. Furthermore, tailor-made spin labels with improved

stability and spectroscopic properties have evolved, such as rigid spin labels that

allow determination of accurate distances in addition to orientations between two

spin labels. This chapter gives an overview of nucleic acids spin labeling using the

three main strategies of SDSL, namely spin labeling during oligonucleotide syn-

thesis, post-synthetic-, and noncovalent labeling. The spin-labeling methods have

been categorized according to the labeling site.

8.1 Introduction

Nucleic acids are the reservoir of genetic information for all living organisms. DNA

carries the genetic blueprint, which is transmitted to the ribosome through RNAs

via transcription and translation. A subtle structural difference between DNA and

RNA, namely the presence of a 20-hydroxyl group on the sugar moieties of the

latter, leads to much more diverse structural and chemical properties of RNA. RNA

is not only a carrier of genetic information, it also carries out a wide range of other

cellular functions central to the life, such as catalysis of chemical reactions by
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ribozymes [1–3] that are found in the catalytic core of both ribosomes [4] and

spliceosomes [5], regulation of gene expression by small interfering RNAs [6],

metabolite-responsive regulatory control by riboswitches [7, 8], protein recogni-

tion, and cellular signaling [9]. These wide ranges of functions are attributed to their

flexibility and ability to fold into complex three-dimensional structures. During the

last few decades, a variety of biochemical and biophysical methods has been

utilized to investigate the structural basis of the functions of these biomolecules.

X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are

high-resolution techniques that give precise information about three-dimensional

arrangements of atoms in space. Although NMR spectroscopy is useful for studying

structure and dynamics of biomolecules under biologically relevant conditions, it is

still limited by the molecular weight of biopolymers, of up to approximately 50 kDa

[10, 11]. Moreover, the range of distances between atoms that can be deduced by

NMR, and are used to generate a three-dimensional structure, are limited to only a

ca. 20 Å, although residual dipolar coupling (RDC) has been used to get informa-

tion about the orientation of helical domains [12]. X-ray crystallography also

suffers from technical challenges. For example, it remains difficult to obtain

crystals of biomolecules that diffract well. This is especially true for RNAs due

to their tendency to misfold, oligomerize and, in general, accommodate conforma-

tional heterogeneity. Additionally, a crystallized form may not represent a biolog-

ically active conformation.

Lower-resolution spectroscopic techniques, such as F€orster resonance energy

transfer (FRET) [13–15] and electron paramagnetic resonance (EPR) [16–24], have

proven to be valuable for the study of structure and dynamics of biopolymers and

are complementary to NMR and X-ray crystallography. Both FRET and EPR are

highly sensitive and thus require small amounts of material. They can be used to

map distances of up to 100 Å, enabling observation of long-range conformational

changes that are triggered by a change in conditions or upon binding to other

biomolecules [25, 26]. Both techniques require incorporation of reporter groups

for distance measurements. In the case of FRET, two different fluorophores are

required; a donor and an acceptor that are usually connected with a flexible tether,

that yield moderate-to-large distance distributions. Another potential complication

for FRET is that the efficiency of the fluorescence transfer depends on the relative

orientation of the two fluorophores. An important feature of FRET is that it can be

used for single-molecule studies [27, 28]. There are also a few other low-resolution

techniques, such as small angle X-ray scattering (SAXS) [29] and circular dichro-

ism (CD) spectroscopy [30], that have been used for probing the global shape and

conformational folding of nucleic acids.

EPR spectroscopy, also called electron spin resonance (ESR), was first reported

by Zavoisky in 1945 [31]. EPR is a highly sensitive and useful technique to probe

the local environment of paramagnetic centers. As such, it can probe polarity and

solvent accessibility. In addition, the reporter groups (spin labels) that are com-

monly used for EPR studies are relatively small, compared to other exogenous tags

(such as fluorophores), which makes them less perturbing to the native structure of
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biopolymers. Like NMR, EPR is based on the principles of magnetic resonance,

interrogating spins of unpaired electrons, such as those present in free radicals. EPR

detects transitions of electron spins from a lower to a higher energy level, induced

by absorption of electromagnetic (microwave) radiation in the presence of an

applied external magnetic field. The magnetic moment of an unpaired electron

can also interact with neighboring nuclei, usually referred to as hyperfine coupling,

and split each electronic spin state into 2I+ 1 levels, where I is the spin quantum

number of the nuclei. The energy levels of an electron can also be affected by the

presence of other electron spins through both exchange- and dipolar coupling.

The mobility of a radical is reflected in the shape of its continuous wave (CW)

EPR spectrum. Figure 8.1 shows the EPR spectra of an aminoxyl radical (usually

called a nitroxide, Fig. 8.1) in the fast, intermediate, and slow motion regime. The

EPR spectrum of a nitroxide has three lines, due to the hyperfine coupling to the

nitrogen atom (I¼ 1). As the motion of the nitroxide slows down, the spectrum

becomes broader. The mobility of a spin label attached to a biopolymer is a

combination of motions of the linker used to attach the spin label as well as the

local and global motions of the biopolymer itself. This feature can be used to

indirectly extract structural information about the dynamics of the biopolymer,

sometimes referred to as structure-dependent dynamics [32–34].

Most structural studies of biopolymers with EPR are based on distance mea-

surements between spin labels, made possible through dipolar coupling. CW-EPR

can be used for measuring intermediate distances, lower than 25 Å [35, 36]. How-

ever, when the distances between the spin labels are larger, the dipolar couplings

become smaller than the inhomogeneous broadening of the EPR spectrum, caused

by unresolved surrounding hyperfine couplings. In order to resolve these long-range

dipolar couplings from the inhomogeneous line broadening, pulsed EPR techniques

are required. The most widely used pulsed EPR technique, pulsed electron–electron

double resonance (PELDOR), also called double electron–electron resonance

(DEER), can yield accurate distances in the range of 15–100 Å [20, 21, 37–

39]. In this technique, short (5–30 ns long) but intense microwave pulses (in kW)

are used, usually applying the four-pulse method [40, 41]. EPR can also yield

information about relative orientations between two interacting spin centers, which

can provide additional constrains to build more accurate structural models [42–

Fig. 8.1 Structure of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical (1) and its CW-EPR

spectra in the fast, intermediate, and slow motion regime, respectively, showing the effect of its

mobility on the spectral line shapes
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45]. This requires the use of rigid spin labels [46, 47], which have also enabled

determination of the internal dynamics of nucleic acids [25, 48].

Although some biopolymers contain intrinsic paramagnetic centers, such as

metal ions [23], most are diamagnetic and require incorporation of spin labels for

EPR studies. Nitroxides are the most commonly used spin labels due to their

persistent nature and relatively small size [49, 50]. Three factors contribute to the

stability of nitroxide spin labels, delocalization of the unpaired electron between the

oxygen and nitrogen atoms, electron donating effects of the alkyl groups on the

carbon atoms adjacent to the nitroxide, and the steric shielding by the alkyl groups.

Figure 8.2 shows the structures of the nitroxide moieties most commonly used for

spin labeling, classified into three groups according to the size of the nitroxide-

bearing ring: six-membered piperidines (1, 2), five-membered pyrrolines (3, 4), and

isoindolines (5). The size of the nitroxide-bearing ring and the nature of its sub-

stituents affect the stability of the nitroxides, especially under reducing conditions

[51–56]. Nitroxides are almost exclusively the spin labels of choice for EPR

studies, although carbon-centered trityl radicals have recently been reported [57–

59] as well as paramagnetic metal ions, such as Gd3+ [60].

This chapter gives an overview of site-directed spin labeling (SDSL), starting

with strategies used for nucleic acids, followed by a fairly comprehensive descrip-

tion of nucleic acid spin labeling. The structures of the spin-labeled nucleotides will

be shown, and the spin-labeling methods will be narrated. The organization of the

material describing covalent labeling is by the labeling sites and will begin with

nucleobase labeling, followed by labeling of the sugar moiety and the phosphate

backbone. After that, noncovalent labeling will be covered, and the chapter con-

cludes with a short perspective.

8.2 Nucleic Acid Spin Labeling

In 1965, McConnell introduced the concept of biopolymer spin labeling using

nitroxide radicals [61, 62], which was initially applied to proteins [16, 18, 63]

and subsequently to nucleic acids [22, 64]. During the early days of spin labeling,

when automated chemical synthesis of nucleic acids was not available, spin label-

ing was performed by alkylation reviewed in [65]. However, due to the presence of

Fig. 8.2 Structures of the most commonly used nitroxide radicals for spin labeling
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several reactive functional groups on the nucleic acid, this approach lacked spec-

ificity. This chapter will focus on spin labeling at selected sites.

While choosing the spin labels, a few criteria must be considered. First, the spin

label has to be compatible with the synthetic methods used to prepare the spin-

labeled biopolymers [47, 66]. Second, the label should be stable enough to allow

EPR measurements under biologically relevant conditions [51, 67–69]. Third, the

spin label must be non-perturbing to the native structure of the nucleic acid and its

function, which is usually evaluated by thermal denaturation of nucleic acid helices

and functional assays with and without the spin labels. Fourth, the structure of the

linker for attachment of the spin labels to the nucleic acid must be carefully chosen.

As mentioned earlier, the shape of an EPR spectrum is sensitive to the motion of the

spin label. If the spin label is attached to the nucleic acid with a long and flexible

linker, the EPR spectrum will be dominated by the motion of the spin label and has,

therefore, limited use for studies of dynamics. Also, such labels will give a larger

distance distribution, which reduces the accuracy of the distance measurements. In

contrast, spin labels that are attached with a rigid linker that does not move

independently of the biopolymer will report the actual dynamics of the site to

which they are attached [70] and also yield accurate distances between two such

labels [45, 48]. In some instances, a semi-flexible linker can be advantageous for

studying conformational changes [71, 72] and binding interactions with other

molecules [69, 73]. Although these labels yield less accurate distances, compared

to the rigid spin labels, they show less orientational effects in PELDOR measure-

ments, which can simplify the EPR measurements and data processing [74].

Another key aspect to be considered for SDSL is the spin-labeling method.

There are three main strategies used for incorporation of spin labels at chosen sites

(Scheme 8.1). The first two approaches rely on covalent attachment of the spin

label, while the third approach takes an advantage of noncovalent interactions. The

first approach utilizes incorporation of the spin labels during the chemical synthesis

of nucleic acids by employing spin-labeled phosphoramidite building blocks

(Scheme 8.1a). Due to advancement of automated chemical synthesis of nucleic

acids, tailor-made and structurally complex labels can be incorporated at specific

sites using this approach [24, 64, 75]. However, synthesis of the spin-labeled

phosphoramidite building blocks is sometimes laborious and challenging. Further-

more, spin labels can be partially reduced upon exposure to the chemicals involved

in oligonucleotide synthesis [47, 66].

The second SDSL approach is incorporation of spin labels into the nucleic acid

after synthesis of the oligonucleotide, referred to as post-synthetic spin labeling

(Scheme 8.1b). In this method, modified nucleotide(s) containing a uniquely reac-

tive functional group, such as 4-thio-uridine [76, 77], a 20-amino nucleoside [32, 35,

78], a phosphorothioate [79], an alkyne [80, 81], or a 20-azido nucleoside [82], are

incorporated at specific site(s) using either chemical or enzymatic synthesis. The

modified oligonucleotides are subsequently reacted with a spin-labeling reagent

containing the appropriate functional group; examples of functionalized spin labels

for post-synthetic labeling are shown in Fig. 8.3. Post-synthetic labeling has the

advantage of minimizing possible decomposition of the nitroxide during the
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Scheme 8.1 A general scheme of the three main strategies used for site-directed spin labeling of

nucleic acids, using TEMPO as a representative nitroxide. (a) Labeling during nucleic acid

synthesis. (b) Post-synthetic labeling, where X and Y represent functional groups that undergo

reaction to form a covalent bond between the spin label and oligonucleotide. (c) Noncovalent spin

labeling

Fig. 8.3 Structures of nitroxide reagents commonly used in post-synthetic spin labeling of nucleic

acids
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oligonucleotide synthesis. It is also less labor intensive and often utilizes modified

oligonucleotides and reagents obtained from commercial sources. Disadvantages of

the post-synthetic method include incomplete labeling and possible side reactions

of the spin-labeling reagent with innate functional groups of nucleic acids, such as

the exocyclic amino groups of the nucleobases.

The third SDSL approach is based on ligand–receptor interactions, where a spin-

labeled ligand binds through noncovalent interactions such as hydrogen bonding,

ionic-, and Van der Waals interactions (Scheme 8.1c). Although there are only a

few examples of using this approach for nucleic acids, there are several examples in

protein spin labeling, where an active site of an enzyme or cofactor binding site has

been utilized for site-specific binding of spin-labeled derivatives of their natural

ligands (reviewed in [65]). The spin label ligand binding can be easily monitored by

EPR spectroscopy as bound and free ligands have very different rotational corre-

lation times [83]. Although this noncovalent strategy circumvents challenges asso-

ciated with both of the aforementioned SDSL approaches that utilize covalent

bonding, it requires binding sites that have a relatively high affinity for their spin-

labeled ligands in order to get enough labeling for EPR studies.

8.2.1 Base Labeling

Nucleobases are the most common sites for incorporation of spin labels into nucleic

acids, due to the availability of various attachment sites and functional groups that

can be readily modified using a variety of different organic synthetic methods.

Another advantage of nucleobase labeling is that the attached spin labels can

readily be accommodated in one of the grooves, in particularly the major groove

and thereby cause minimal structural perturbation. In addition to modification of

the exocyclic amino groups, spin labels have been incorporated into the C2, C4, and
C5 positions of pyrimidines. In particular, the C5 position is the most frequently

used because of the availability of relatively simple conjugation methods, such as

transition-metal-catalyzed coupling to C5-halogenated nucleobases and copper-

catalyzed cycloaddition reactions between C5-alkynes and azido-nitroxides. Purine
nucleobases are spin-labeled at the C2, C6, and C7 positions, where C7 is labeled

by using 7-deaza nucleobase analogues. The following section contains a brief

description of nucleobase spin labeling, starting with labeling of exocyclic amino

groups, followed by pyrimidine and purine spin labeling through C–C bond forma-

tion. The last section describes rigid spin labels.

8.2.1.1 Exocyclic Amino Groups of Pyrimidines and Purines

The exocyclic amino groups of cytosine (N4), guanine (N2), and adenine (N6)
nucleobases have all been modified with a spin label. Although amino groups of

nucleobases are involved in base pairing and structural integrity of nucleic acid
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helices, a single substitution on an amino group still allows one proton to participate

in hydrogen bonding to its complementary base. Bannwarth and Schmidt demon-

strated the synthesis of spin-labeled phosphoramidites of the N4-TEMPO-modified

20-deoxycytidine (16) (Fig. 8.4a) and 5-methyl-20-deoxycytidine (17) and their

incorporation into DNA oligonucleotides [84]. Subsequently, Giordano and

Fig. 8.4 TEMPO-labeled exocyclic amino groups of nucleosides/nucleotides using the

phosphoramidite approach (a) and the post-synthetic convertible nucleoside approach (b)
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coworkers reported improved yield of these phosphoramidites, along with the

synthesis and incorporation of spin-labeled 20-deoxyadenosine (18) and 2-amino-

20-deoxyadenosine (19) into DNA [85]. Since the nitroxides in these labels are

directly connected to the nucleobases, their motion is sensitive to the microenvi-

ronment of the amino group, in particular, hydrogen bonding. This feature has been

utilized to demonstrate that spin label 16 can not only detect mismatches but also

identify its base-pairing partner in duplex DNA [86]. The spin-labeled nucleosides

20 and 21 (Fig. 8.4a), where TEMPO is connected to the exocyclic amino groups of

C and A through a semi-flexible urea linkage, have also been incorporated into

DNA oligomers using the phosphoramidite approach [87].

The exocyclic amino groups have also been modified by a post-synthetic mod-

ification through the convertible nucleoside approach, developed by Macmillan and

Verdine [88]. In this method, a leaving group is displaced by an amine at the end of

the chemical synthesis, which also deprotects the oligonucleotide and cleaves it

from resin. The flexible spin label 22 (Fig. 8.4b) has been incorporated into DNA

using this strategy and was used for studying dynamics as well as DNA–protein

interactions by high-field EPR [89, 90]. A similar approach has been used to label

the exocyclic amino group of guanine by treating 2-fluorohypoxanthine-containing

oligonucleotides with 4-amino TEMPO to afford nucleotide 23, used for studying

DNA hybridization and folding of G-rich DNA sequences into G-quadruplex

[91]. This spin label (23) has also been used to probe conformational transitions

between duplex DNA [92] and structural changes induced by lesions in DNA

duplexes using pulsed EPR spectroscopy [93]. Spin labels have also been installed

on the exocyclic amino groups of RNA nucleobases guanine (24), cytosine (25),

and adenine (26) (Fig. 8.4b) with good yields by H€obartner and coworkers and used
for mapping secondary structures of RNAs by pulsed EPR spectroscopy [94]. More

recently, the same group reported a strategy for SDSL of long RNAs that are

beyond the limit of solid-phase oligonucleotide synthesis, which entailed a ligation

of short spin-labeled RNA oligonucleotides to an in vitro transcribed RNA, cata-

lyzed by a deoxyribozyme. This method was used to synthesize the S-adenosyl-
methionine-I (SAM-I) riboswitch containing 24 [95].

8.2.1.2 C5 of Pyrimidines

Conjugation of spin labels through amino groups has been reported for the

5-position of uridines, such as nucleosides 27 and 28, which were incorporated

into oligonucleotides using phosphotriester-based synthesis (Fig. 8.5a)

[96, 97]. However, the first spin-labeled phosphoramidite for the incorporation of

spin labels into DNA by automated chemical synthesis was reported by Hopkins

and coworkers [98]. A spin-labeled uridine (29) and a cytosine (30) were prepared

by a palladium-catalyzed Sonogashira cross-coupling reaction between their

corresponding 5-iodo analogues and the nitroxide 2,2,5,5-tetramethylpyrrolin-1-

yloxy-3-acetylene (TPA) [98, 99]. Later, Prisner and coworkers developed an

on-column version of this method, where the coupling was performed during the
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solid-phase synthesis of both DNA (29) [100, 101] and RNA (31) [66]. The TPA

label is connected to the nucleobase by a short linker that has only rotation around

the single bonds flanking the acetylene and has been a useful probe for measuring

accurate long-range distances in nucleic acids by PELDOR [66, 69, 73, 100,

Fig. 8.5 C5-labeled pyrimidines. (a) Spin labels incorporated by the phosphoramidite method. (b)

Spin labels incorporated post-synthetically
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101]. Spin label 32 is of similar design as the TPA label and has relatively short

synthesis compared to the TPA [102] and has been used to investigate

G-quadruplex formation in human telomeric DNA by DEER [103].

Recently, we have reported the synthesis and incorporation of the isoindoline-

derived spin labels 33 and 34 (Fig. 8.5a) into DNA oligonucleotides. These labels

showed limited mobility in duplex DNA, especially 34, where an intramolecular

hydrogen bond between the N–H of the imidazole and O4 of the uracil restricted

rotation around the bond connecting the spin label to the base [104]. A structurally

similar but more flexible spin label (35) was also incorporated into DNA by the

phosphoramidite approach [74]. Spin labels 32–35 are advantageous for distance

measurements as the N–O bond of the nitroxide lies on the same axis as the

rotatable single bonds linking the label to the nucleobase, thereby causing limited

displacement of the nitroxide, relative to the nucleobase, upon bond rotation [74].

C5-labeled pyrimidines have also been incorporated into nucleic acids using

post-synthetic labeling. The Cu(I)-catalyzed Huisgen–Meldal–Sharpless [3 + 2]

cycloaddition reaction (click reaction) has been used to incorporate an

isoindoline-derived spin label by an on-column reaction of an azido-nitroxide

(15, Fig. 8.3) with a DNA oligomer containing 5-ethynyl-20-deoxyuridine to pro-

duce 36 (Fig. 8.5b), which was used for probing local structural lesions in duplex

DNA, such as abasic sites and mismatches [81]. Subsequently, Seela and coworkers

used a similar click chemistry approach for incorporation of spin label 37, which

was used for distance measurements in DNA oligonucleotides and for studying

DNA structure and DNA–protein interactions [105]. Spin labels 38 and 39 have

also been incorporated into RNA oligonucleotides using post-synthetic labeling.

Spin label 39 with the improved stability toward nitroxide reduction and longer

relaxation time was used for distance measurements using Q-band DEER [106].

8.2.1.3 Other Pyrimidine Modifications

During early 1970s, thio-modified nucleotides, which are generally found in

tRNAs, were used for SDSL of nucleic acids. For example, 4-thiouridine found in

tRNAs of E. coli was selectively spin-labeled by alkylation under mild reaction

conditions to afford spin-labeled tRNA (40) (Fig. 8.6) without affecting their

activity [107]. Similarly, 2-thiocytidine has been used for spin labeling of tRNA,

which can be enzymatically incorporated into tRNAs using tRNA nucleotidyl

transferase and alkylated to yield spin-labeled nucleotide 41 [108]. Dugas and

coworkers reported site-specific spin labeling of E. coli tRNA using the rare base

2-thio-5-(N-methylaminomethyl)-uridine, present in the anticodon region of

Glu-tRNA, by acylation to yield nucleotide 42 [109].

After the development of phosphoramidite chemistry and solid-phase synthesis

of oligonucleotides, 4-thiouridine has been site-specifically incorporated into RNA

oligonucleotides and used for SDSL of RNAs by reacting it with thio-specific spin-

labeling reagents to yield spin-labeled nucleotides, such as 40 [77, 110] and 43–45

(Fig. 8.6) [76, 110]. Spin-labeled nucleotides 44 and 45 were shown to have
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restricted internal motion, relative to the nitroxide 43, due to the presence of an

extra methyl group. These spin labels have been used for studying conformational

changes and dynamics of RNA duplexes [76, 111, 112] as well as a synthetic

tetracycline RNA aptamer upon ligand binding using pulsed EPR

spectroscopy [113].

8.2.1.4 Other Purine Modifications

As described above, purines have mostly been spin-labeled at their exocyclic amino

groups (18, 19, 21, 23, 24, and 26, Fig. 8.4) as shown in the aforementioned section;

however, there are a few examples where purines have been spin-labeled by

carbon–carbon bond formation. Spin-labeled nucleotide 46 (Fig. 8.7) was prepared

by a post-synthetic Diels–Alder [4 + 2] cycloaddition reaction of a nitroxide-

functionalized maleimide with 7-vinyl-7-deaza-20-deoxyguanosine [114]. Spin

label 47 was incorporated into RNA using an on-column Sonogashira cross-

coupling reaction between 2-iodo adenine and an alkyne-functionalized nitroxide

(12, Fig. 8.3), during the chemical synthesis of the oligomers [66]. The spin-labeled

7-deazaadenosine analogue 48 was prepared by a post-synthetic click reaction with

an alkyne-modified DNA for distance measurements by PELDOR [80]. Spin label

49 has recently been incorporated post-synthetically into RNA oligonucleotides by

using a previously reported strategy [115], in which a linker containing an aliphatic

amino group was delivered to a chosen RNA nucleobase (guanosine in this case)

Fig. 8.6 Spin-labeled thiouridines and cytosine in RNA, from post-synthetic labeling
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using a complementary DNA reagent and subsequently acylated with a spin-

labeling reagent [106]. Kieffer and coworkers have used a DNA-splint-mediated

ligation strategy to incorporate 6-thioguanosine at internal sites of long RNA

followed by alkylation with a nitroxide to yield spin-labeled RNAs [116].

8.2.1.5 Rigid Labels

The spin labels described thus far have been attached through either flexible or

semi-flexible linkers. As mentioned earlier, such labels cannot accurately report the

actual dynamics of the nucleic acids, and the distance measurements by EPR using

these labels result in wider distance distributions. Therefore, the ideal spin label

does not move independently of the nucleic acid to which it is attached. Such spin

labels are here referred to as rigid spin labels, although there are examples in the

literature where spin labels that have some mobility have been called rigid, when

they should more appropriately have been called semi-rigid.

Hopkins and coworkers reported the synthesis and incorporation of the first rigid

spin label (Q, Fig. 8.8) into DNA oligonucleotides using solid-phase chemical

synthesis [117, 118]. The rigid spin label Q is a C-nucleoside and has been used

for studying sequence-dependent dynamics of duplex DNAs [119–121]. However,

Q has a lengthy synthesis and also requires the nonnatural base-pairing partner

2-aminopurine (2AP), which hampered its further use for EPR studies of nucleic

acids. We have synthesized the rigid spin label Ç (“C-spin”) (Fig. 8.8) and

incorporated it into DNA oligonucleotides using solid-phase synthesis [46]. In Ç,

Fig. 8.7 Miscellaneous spin-labeled purine nucleotides
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a nitroxide-bearing isoindoline ring has been fused to cytosine (C) through an

oxazine linkage. The rigid spin label Ç can form a stable and structurally

non-perturbing base pair with guanine (G), as observed in the crystal structure of

a Ç-labeled DNA duplex [122].

Spin label Ç has enabled accurate distance measurements in DNA duplexes, as

well as determination of the relative orientations between two such labels using

pulsed EPR spectroscopy [45, 123]. Furthermore, Ç has been used to study the

dynamics and conformations of DNA hairpin loops and bulges [47, 124] as well as

motion associated with substrate recognition in a group I ribozyme [70] by

CW-EPR. Spin label Ç, in conjunction with PELDOR, has also been used to obtain

insights into internal mobility of duplex DNAs [48]. An interesting feature of Ç is

that reduction of the nitroxide functional group yields a fluorescent probe, which

has been used for both detecting single-base mismatches and to identify its base-

pairing partner in duplex DNA [125–127]. The bifunctional nature of Ç also

allowed for the study of the cocaine aptamer folding by both fluorescence and

EPR spectroscopies [128]. A ribo-analogue of the rigid spin label Ç (Çm), which

contains a methoxy group at 20-position, has also been prepared and incorporated

into different RNA oligonucleotides by solid-phase chemical synthesis [129] and

used for distance determinations as well as orientation selections in RNA oligo-

nucleotides by PELDOR [130].

8.2.2 Sugar Labeling

The sugar moieties of both DNA and RNA nucleotides have been used for conju-

gation of spin labels. However, the 20-position is the only readily available site for

labeling at internal positions of nucleic acids, which projects the label into the

minor groove. In contrast, labeling of the 50- and 30-positions is restricted to the

oligonucleotide termini. Post-synthetic modification is generally the method of

choice to label the sugars. One such high-yielding spin-labeling method for RNA

Fig. 8.8 Structures and base-pairing schemes of rigid spin label nucleosides Q and Ç/Çm, where

X indicates either 20-deoxyribose (in Ç) or 20-methoxyribose (in Çm)
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is the reaction of readily available 20-amino-modified oligonucleotides with the

commercially available 4-isocyanato-TEMPO (7, Fig. 8.3) to afford an urea-linked

20-spin-labeled nucleotide (50, Fig. 8.9a) [32, 78]. Spin label 50 has been used for

studying structure-dependent dynamics of the trans-activation-responsive (TAR)

RNA [71, 119, 131] and metal-ion-induced folding of hammerhead ribozyme by

EPR spectroscopy [132–134]. It has also been used for studying ligand-induced

folding of the tetracycline aptamer [113] and for distance measurements in nucleic

acids by pulsed EPR [133, 135, 136]. DeRose and coworkers have conjugated a

nitroxide to the 20-amino group through a short amide linker (51); however, it was

found to have a destabilizing effect on RNA helices [35].

Spin labels have also been incorporated post-synthetically at 20-positions of

sugars using click-chemistry, such as the spin label nucleotide 52 [137]. This label

has been used for distance measurements in DNA using DEER; however, large

distance distributions were obtained due to the flexibility of the linker. Recently,

Fig. 8.9 Spin-labeled sugars. (a) Spin labels for incorporation at the internal positions through

conjugation to the 20-position of sugars. (b) Spin labels for incorporation at the 50- and 30-ends of
nucleic acids. A stands for adenine and B for nucleobase

8 Site-Directed Spin Labeling for EPR Studies of Nucleic Acids 173



H€obartner and coworkers reported an elegant, deoxyribozyme-mediated approach

for site-specific labeling of internal 20-hydroxyls of in vitro transcribed long RNAs

[82]. In this method, a 20-labeled guanosine triphosphate (GTP) is used as a substrate
for a Tb3+-deoxyribozyme to install a spin label, such as 53, on the 20-hydroxyl
group of any chosen internal adenine nucleotide through a 20, 50-phosphodiester
linkage.

Examples of 50-labels include TEMPO-derived spin label 54 [138] and a carbon-

centered triarylmethyl (trityl or TAM) spin label (55) (Fig. 8.9b). The trityl labels

were incorporated into short DNA oligonucleotides by coupling a trityl acid

chloride with 50-piperazine-activated short DNA oligonucleotides and used for

distance measurements at physiological temperature on immobilized duplex DNA

[58]. Trityl radicals have emerged as a new class of spin labels for distance

measurements [57, 59, 139] and offer certain advantages over nitroxide radicals,

such as a narrow spectral width, stability in reducing environment [52, 140], and a

long transverse relaxation time (TM) in the liquid state at room temperature

[141]. However, trityl radicals are considerably larger than nitroxides, which limits

where they can be incorporated without causing structural perturbations.

Caron and Dugas developed a 30-end labeling strategy for tRNA using periodate

oxidation of the cis-geminal diol of the sugar moiety at the 30-end to make the

corresponding dialdehyde, which on reductive amination with 4-amino TEMPO

and sodium borohydride afforded morpholino spin label 56 [142]. A milder reduc-

ing agent, sodium cyanoborohydride, yielded spin label 57, which showed more

motional freedom than spin label 56 [143]. These labels have been used for

studying 30-end conformations and aggregations of tRNAs [143, 144].

8.2.3 Phosphate Labeling

The phosphate group of the sugar-phosphate backbone of nucleic acids is another

useful site for spin labeling. Spin labels have been conjugated to the phosphorous

atoms at both terminal and internal positions by replacement of one of the

non-bridging oxygen atoms with the label. Advantages of phosphate labeling

include the availability of post-synthetic methods using commercially available

materials and the fact that phosphodiesters can be labeled independent of the

nucleotide sequence and without having to prepare specifically modified nucleo-

sides or nucleotides. Furthermore, spin labels attached to phosphorous generally

interfere less with the duplex formation since they are placed at the edges of the

helices. However, labeling of the phosphodiester group yields a mixture of two

diastereomers, which may lead to ambiguous structural information, although the

isomers of short oligonucleotides can be separated by HPLC [145, 146]. In case of

an RNA phosphate labeling, the 20-OH group adjacent to the labeled phosphodiester

needs to be either replaced with a hydrogen or a 20-OMe group, because the 20-OH
group leads to strand cleavage through 20,30-transesterification [147].
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Phosphorous atoms of internal phosphodiesters have been spin labeled using

H-phosphonate chemistry, where a hydrogen-phosphonate internucleotide linkage

is introduced at a specific site during the oligonucleotide synthesis and oxidized in

the presence of 4-amino TEMPO to yield phosphoramidate 58 (Fig. 8.10a) [148] or

derivatives with different linkers [138]. One of the non-bridging oxygen atoms of a

Fig. 8.10 Spin labels

attached to internal

phosphodiesters (a) and

terminal phosphate groups

(b). R stands for OH or H,

and B represents a

nucleobase
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phosphodiester can be replaced with sulfur by using a sulfurizing agent instead of

an oxidizing agent during the chemical oligonucleotides synthesis [149]. The

resulting phosphorothioate can be specifically alkylated to afford a spin-labeled

nucleotide, such as 59 [150]. Similarly, RNA oligonucleotides have been spin-

labeled to afford spin label 60 [79], designated as R5, which has been used for

studying GNRA tetraloop–receptor interactions in RNAs [151], for dynamics

[152, 153], for distance measurements [79, 154], and for studying protein–nucleic

acid complexes using PELDOR [155].

Subsequently, Qin and coworkers reported a 4-bromo-substituted analogue of 60

(61), which has been used to study dynamics of the substrate-recognition RNA

element in the group I intron ribozyme by CW-EPR spectroscopy [156], in addition

to studying structure and dynamics of DNA [145, 146, 157]. Linking adjacent

phosphorothioates with a nitroxide-containing bifunctional alkylating agent

resulted in the conformationally restrained spin label 62 [158], similar to what

has been reported for spin labeling of two cysteines in proteins [159, 160].

Due to their higher nucleophilicity, terminal phosphates are easier to modify

than phosphodiesters. Dzuba and coworkers labeled both 30- and 50-terminal phos-

phates with 4-amino TEMPO to afford phosphoramidates 63 and 64 (Fig. 8.10b),

respectively, and used the spin-labeled DNA to study conformational changes

induced by non-nucleotide inserts in duplex DNAs by PELDOR [161]. A

phosphoramidite derivative of 4-hydroxy TEMPO has been prepared and used to

incorporate spin labels into the 50-end of RNA hairpins [162]. Oligonucleotides

containing terminal phosphorothioates have also been prepared by incorporation of

50-guanosine monophosphorothioate (GMPS) during in vitro transcription of RNA

using T7 RNA polymerase, which was subsequently spin labeled to afford 65

[36]. Similarly, a phosphorothioate group has been enzymatically incorporated at

the 50-position of either DNA or RNA using T4-polynucleotide kinase, followed by

alkylation to yield spin-labeled nucleotide 66 [163].

8.2.4 Noncovalent Labeling

Nucleic acids have been spin-labeled noncovalently by using intercalators

(reviewed in [64]). However, spin-labeled intercalating agents have limited use,

because they lack sequence specificity and since multiple ligands can bind to the

same nucleic acid. Lhomme and coworkers reported the first example of a

noncovalent SDSL (NC-SDSL) of nucleic acids, in which a spin-labeled acridine

intercalator–adenine conjugate (67, Fig. 8.11) was bound to an abasic site in a

duplex DNA [164, 165]. The abasic site can readily be incorporated at specific sites

in DNA by nucleic acid synthesis using commercially available phosphoramidites.

Nakatani and coworkers prepared naphthyridine carbamate dimer (NCD, 68) that

bound specifically to G–G mismatches and used it for site-specific programmable

assembly of spin probes on one- and two-dimensional DNA tiles [166–169].
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Our group has reported NC-SDSL of nucleic acids in which an abasic site in a

duplex DNA served as a receptor for the spin-labeled ligand ç (Fig. 8.12a)

[170]. The modified nucleobase ç is derived from the rigid spin label nucleoside

Fig. 8.11 Spin-labeled intercalator (67) and nitroxide-conjugated G–G mismatch-binder NCD

(68) used for noncovalent spin labeling of nucleic acids

Fig. 8.12 Structure of an abasic site in DNA (a, left) and spin label ç base paired with G (a, right)
used in NC-SDSL. (b) Structures of spin-labeled ligands for NC-SDSL
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Ç, an analogue of the nucleobase cytosine (C). The spin label ç binds to the abasic

site by forming hydrogen bonds with an orphan guanine base on the opposite strand

and π-stacking interactions with base pairs immediately flanking the abasic site.

The spin label ç has been used for distance measurements in duplex DNA and for

studying protein-induced DNA bending using pulsed EPR [26]. A structure–func-

tion relationship study of ç showed that its binding is primarily governed by the

identity of the base-pairing nucleotide (the orphan base) and flanking nucleotide

sequence [171]. Several other derivatives of ç for NC-SDSL have also been

reported [172].

More recently, several pyrimidine-derived spin-labeled ligands (69–73,

Fig. 8.12b) have been screened for binding to abasic sites in nucleic acid duplexes.

However, most of the labels showed lower binding affinity than ç, except 72, which

binds fully to abasic sites in both DNA and RNA [173]. Masters and coworkers

recently reported a new class of profluorescent nitroxides, for example, spin label

74 for NC-SDSL of both DNA and RNA [174].

NC-SDSL provides a simple approach to direct spin labels to specific sites of

nucleic acids and has several advantages over the other two spin-labeling strategies,

the phosphoramidite- and the post-synthetic method. For example, syntheses of the

spin label ligands are simpler than the spin-labeled phosphoramidites, they are

relatively more stable and can be stored for extended periods of time. Furthermore,

spin labeling can be performed simply by mixing the spin label ligand with the

nucleic acid containing abasic sites. However, this strategy requires a binding site

that has high enough affinity for the spin label ligand to ensure complete and

specific binding. The NC-SDSL utilizing abasic sites is also restricted to base-

pairing regions in nucleic acids.

8.3 Conclusions and Future Prospects

This chapter highlights advances in the development of site-specific spin-labeling

strategies of nucleic acids. Coupled with recent advances in EPR techniques, such

as pulsed EPR methods, SDSL strategies have enabled routine interrogations of the

structure and dynamics of nucleic acids that give insights into their folding and

functions. This includes recent examples of long RNAs, where spin labels were

incorporated using either protein- or DNA catalysis. Several of the SDSL tech-

niques are straightforward to carry out using readily available materials, which has

given researchers an easy access to spin-labeled nucleic acids for EPR studies. This

includes noncovalent labeling, where the label is simply mixed with a binding site

for the spin label. Tailor-made spin labels with improved spectroscopic properties

have evolved, for example, the rigid spin label Ç, which has allowed determination

of relative orientations of two spin labels, in addition to accurate distance measure-

ments in nucleic acids. The rigidity of Ç has also allowed the internal dynamics of

DNA duplexes to be investigated by EPR spectroscopy. Carbon-centered trityl

radicals have enabled distance measurements at physiological temperatures using
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pulsed EPR. Trityl radicals have thus emerged as an exciting class of spin labels for

EPR spectroscopy that are relatively stable under reducing conditions, which is a

prerequisite for in-cell studies. While a number of spin labels have been described

in the last few years, there is still a need for readily accessible spin labels with

improved spectroscopic properties and stability. This will further the use of EPR

spectroscopy to study nucleic acids, which has shown a great promise as a stand-

alone technique or, more recently in combination with NMR spectroscopy [175] to

obtain high-resolution solution structures of nucleic acids and their complexes with

other biomolecules.
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