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ABSTRACT: The contribution of protons in or near biradical polarizing agents in
Dynamic Nuclear Polarization (DNP) has recently been under scrutiny. Results
from selective deuteration and simulations have previously suggested that the role of
protons in the biradical molecule depends on the strength of the electron−electron
coupling. Here we use the cross effect DNP mechanism to identify and acquire 1H
solid-state NMR spectra of the protons that contribute to propagation of the
hyperpolarization, via an experimental approach dubbed Nuclear−Nuclear Double
Resonance (NUDOR).

The weak coupling between nuclear spins and the magnetic
field in Nuclear Magnetic Resonance (NMR) spectros-

copy generates low nuclear spin polarization, which results in
low signal-to-noise ratios and long signal acquisition times.1,2

Dynamic Nuclear Polarization (DNP) uses the strong coupling
of unpaired electron spins with the magnetic field to increase
the sensitivity of solid-state NMR, with numerous reported
applications in material science and biology.3−8 A combination
of Magic Angle Spinning (MAS) and DNP has been shown to
yield high resolution and sensitivity in solid-state NMR.2−6

The unpaired electrons, that are often provided by biradical
polarizing agents,2,9,10 are typically used to hyperpolarize
protons (1H) using the cross effect (CE) mechanism under
MAS.11−18 Briefly, in CE DNP, the nuclear spins that are close
to the biradical are hyperpolarized due to the presence of
electron−nuclear hyperfine interactions, and 1H−1H homo-
nuclear spin diffusion equilibrates this hyperpolarization with
protons that are further away.
The protons in the biradicals have strong hyperfine

couplings to the electron spins, which contains both isotropic
and anisotropic components on the order of several MHz (see
Figure S6). This coupling renders the spectra of such protons
very broad and below the detection limit.19,20 The hyperfine
couplings modify the Larmor frequency and thus impacts the
propagation of the spin hyperpolarization; this correlation is at
the center of the concept called “spin diffusion barrier”.19−22

The situation is similar to heteronuclear spin diffusion,23−26

and the importance of this “spin diffusion barrier” for MAS-
DNP has been debated.20,27,28 However, large spin system
simulations have indicated that quantitative results can be
obtained only if the protons in the biradical are consid-
ered,25,26,29,30 and the importance of these protons has been
shown experimentally via selective deuteration.27,31,32 As the
protons that are proximal to the unpaired electron spin are

critical to MAS-DNP, it is of great interest to detect them via
NMR, at least by indirect means.
In this Letter, we introduce a Nuclear−Nuclear Double

Resonance (NUDOR) technique to indirectly detect protons
in and around biradicals via detection of remote protons. The
experiment is used to analyze the role of those protons close to
the radicals in the cross effect DNP mechanism, i.e. how
critical they are to the bulk nuclear spin hyperpolarization
process. The approach, which uses off-resonance irradiation
(Figure 1), produces data analogous to an Electron−Nuclear
Double Resonance (ENDOR)33 experiment. This NUDOR
experiment is used to show that in biradicals like TEKPol34

and AMUPol,35 the strongly coupled protons in the biradicals
play an essential role in MAS-DNP. It also proves that these
strongly coupled protons are not critical for the performance of
a biradical called AsymPol-TEK.36 This was further validated
by evaluating a series of partially deuterated derivatives,
confirming that the protons in AsymPol-TEK biradicals do not
significantly contribute to DNP because of strong electron−
electron interactions within the molecule.28 This insight is
valuable for designing future biradicals, as it indicates that
these protons may not be as critical in certain cases.
Probing otherwise invisible spins, using observable NMR or

EPR signals, is well-known in magnetic resonance.37−39 In
EPR, the Electron−Electron Double Resonance (ELDOR)
experiment relies on the irradiation of forbidden transitions to
observe nuclei in close proximity to the electron spin. In NMR,
the widely utilized Chemical Exchange Saturation Transfer
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(CEST)37 relies on weak radiofrequency (rf) fields to saturate
invisible protons, which affects the observable proton spins by
chemical exchange. Similarly, one can use the homonuclear
spin diffusion instead of the chemical exchange to detect a site
of interest. This is used, for example, in Progressive Saturation
of the Proton Reservoir (PROSPR).40 Here, the pulse
sequence is dubbed NUDOR in reference to the ELDOR
experiment.41,42

The idea behind the experiment described here is that if the
unobservable, strongly coupled protons (i.e., protons that are
strongly hyperfine coupled to the electron spins) in or near the
biradical molecules contribute to the DNP mechanism, the
signal intensity (I) of the observable bulk proton spin bath,
with and without microwave (μw) irradiation (denoted by the
DNP enhancement factor, ϵon/off = Ion/Ioff), can be modulated
by perturbing the spin states of the strongly coupled nuclei.
This hypothesis would be valid if the strongly coupled protons
are essential to the DNP mechanism (vide inf ra). The NMR
spectrum of the biradical protons (purple region) span a much

higher frequency range than the spectrum of the bulk protons
(black region, Figure 1a), due to the strong hyperfine
couplings with the unpaired electrons. In NUDOR, the initial
pulse train presaturates the bulk proton signal and
subsequently, a long and low power saturation pulse (500
ms at a rf nutation of 15 kHz) is applied at a frequency νoff,
where νoff is an off-resonance frequency with respect to the
observable bulk proton signal. Finally, the signal of the bulk
protons is detected using a spin echo sequence at the
frequency νBulk (Figure 1b). Changing the offset corresponds
to changing the radius of a shell surrounding each radical: the
protons located within this radius are partially saturated
(Figure 1c). Then, spin diffusion transports this saturation to
the observable bulk signal. MAS modulates the electron−
nuclear hyperfine couplings, which results in a spread of the
saturation across a wider frequency range, and also results in
more efficient spin diffusion due to nuclear dipolar rotor
events.10,24,43 It is to note that the effect of the pulse sequence

Figure 1. (a) Schematic of a 1H NMR spectrum and position of the on-resonance (νBulk) and off-resonance (νoff) radiofrequency (rf) irradiations.
(b) Pulse sequence used for NUDOR: the bulk protons are first presaturated and subsequently a long off-resonance saturation pulse (∼500 ms, 15
kHz rf) is applied, followed by detection of the bulk protons with an echo sequence. The resulting spectra are collected with and without μw
irradiation. (c) Structure of the biradical TEKPol in a frozen 1,1,2,2-tetrachloroethane (TCE) solution. The purple color indicates the radius for
hyperfine coupling; the gradient illustrates the strength of the coupling. The oval circle (red) represents the volume of the protons that are
saturated by the νoff irradiation. (d) Example of the NUDOR profile for TEKPol with and without μw irradiation. (e) Structures of the biradicals
studied using NUDOR in this work.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c03254
J. Phys. Chem. Lett. 2025, 16, 635−641

636

https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03254?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03254?fig=fig1&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c03254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


can be easily reproduced with standard spin dynamics
simulations on a three-spin system (see Figure S5).
A series of 1D 1H solid-state NMR spectra can be obtained

at νBulk by varying νoff. The experiments are performed in the
presence and absence of μw irradiation to probe the
involvement of the protons in the DNP mechanism. Taking
the ratios of the μw on and off signal intensities also limits the
distortion of the profile due to the rf properties of the NMR
probe (see SI). An example of the effect of the variable off-
resonance irradiation is shown in Figure 1d for the biradical
TEKPol (Figure 1e), both in the presence and absence of μw
irradiation. In both cases, the off-resonance irradiation impacts
the bulk NMR signal intensity up to |νoff − νBulk | ≈ 4 MHz.
The proposed NUDOR experiment is also analogous to the
SPIDEST experiment44 but uses continuous-wave irradiation
combined with the DNP enhancement factors to obtain the
“hyperfine-shifted” spectra.44

Figure 2a shows the NUDOR profile, i.e. the normalized
DNP enhancement factor plotted as a function of νoff, for
AMUPol in glycerol-d8/D2O/H2O (6/4/1 vol %) and TEKPol
in 1,1,2,2-tetrachloroethane (TCE). The profiles are normal-
ized with respect to the reference DNP enhancement factor
obtained in the absence of the saturation pulse. As expected,
the enhancement is null when νoff = νBulk since the on-
resonance saturation nullifies the bulk signal. As the irradiation
frequency of the saturation pulse is shifted away from the bulk
resonance, the enhancement increases. Once the off-resonance
saturation pulse is applied beyond 4 MHz, the observed
NUDOR enhancement is equal to the reference DNP
enhancement factor, i.e. when obtained without the saturation
pulse. The calculated ENDOR spectra of the biradicals were
obtained with EasySpin45,46 using the hyperfine couplings
calculated via DFT (see SI). In the case of AMUPol and
TEKPol, the total widths of the experimental NUDOR profiles

Figure 2. NUDOR profiles of (a) 16 mM TEKPol in TCE (black) and 10 mM AMUPol in glycerol-d8/D2O/H2O (6/4/1 vol %) (red), and (b) 10
mM AsymPol-TEK (blue) and 10 mM AsymPol-TEK-d20 (green) in TCE. Dashed lines correspond to simulated ENDOR spectra. (c) Sphere of
0.35 nm around the NO• group of TEKPol, corresponding to |νoff50% − νBulk| ≈ 0.2 MHz. (d) Sphere of 0.7 nm around the NO• group of AsymPol-
TEK corresponding to |νoff50% − νBulk| ≈ 0.2 MHz.
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and calculated ENDOR spectra correlate well (Figure 2a).
Interestingly, the NUDOR profiles show features that are
present in the theoretical ENDOR spectra (Figure 2a). For
example, the shoulders near +2 and −2 MHz in the NUDOR
profiles of both TEKPol and AMUPol are reproduced in the
calculated ENDOR spectra. Note that a better match between
NUDOR and ENDOR for AMUPol can be obtained by using
lower power saturation pulses (10 kHz rf, see Figure S3a)�
this comparison confirms that the NUDOR experiment indeed
senses the nuclei in the vicinity of the biradical.
For AMUPol and TEKPol, the NUDOR experiments show

that 50% of the enhancement is recovered at |νoff50% − νBulk | ≈ 2
MHz; such large 2 MHz hyperfine couplings correspond to
protons located proximate to the nitroxide (NO•) group
(located within ca. 0.35 nm; the corresponding spheres are
shown in Figure 2c). Since TEKPol and AMUPol have modest
electron−electron couplings,47 they may be inefficient at
directly hyperpolarizing the bulk medium.16,27,28 Indeed, the
rate at which the CE polarizes the nuclei (RCE) can be
approximated as

R
D J A A( 2 ) ( )a b a b a n b n

n
CE

, ,
2

, ,
2

2

+ ± ±i

k
jjjjjjj

y

{
zzzzzzz (1)

where Da,b and Ja,b are the electron−electron dipolar coupling
and the exchange interaction, respectively. Aa,n± and Ab,n± are the
pseudosecular hyperfine coupling to the nucleus n and ωn is
the nuclear Larmor frequency.16,28 This relation shows that for
a moderate ⟨(Da,b+2Ja,b)2⟩, stronger ⟨(Aa,n± -Ab,n± )2⟩ is required
for efficient polarization. The NUDOR experiments thus
confirm that the protons in the biradicals AMUPol and
TEKPol are critical for the hyperpolarization transfer. This
result is entirely consistent with the previous experimental
observations with TEKPol.27

On the other hand, we have previously used deuterated
AsymPol biradicals and extensive large spin-system simulations
to show that the protons in the AsymPol biradicals play a
limited role in polarization transfer.16,28 To experimentally
confirm this notion, the NUDOR experiment was applied to
two biradicals in the AsymPol family: AsymPol-TEK36 and
AsymPol-TEK-d20, which has been newly synthesized and
reported here (Figure 1d). These radicals are identical, except
that the protons with the largest hyperfine couplings have been
replaced with deuterons in AsymPol-TEK-d20 (for synthesis,
see SI). The results are striking: the NUDOR profiles of both
biradicals are identical, showing that the protons that were
replaced by deuterons do not participate in the DNP
mechanism (Figure 2b). In both cases, a narrow component
close to the bulk resonance frequency is observed, and at
further off-resonance frequencies, the enhancement recovers
sharply back to the reference value. The NUDOR profiles of
AsymPol-TEK and AsymPol-TEK-d20 are identical, which is
different from the expected ENDOR spectra. Indeed,
according to the ENDOR simulations, the two biradicals
should have strikingly different ENDOR spectra and thus
different NUDOR profiles (dotted lines Figure 2b). In
particular, the predicted ENDOR spectrum of AsymPol-TEK
shows signals in the region ranging from 1.5 to 3 MHz.
However, these features are not observed in the experimental
NUDOR profiles, which demonstrates that saturating or
removing a few of the most strongly coupled nuclear spins in
AsymPol-TEK (i.e., the protons closest to the nitroxide
moieties), does not affect the CE DNP process. This means

that the protons that contributes most to the hyperpolarization
of the bulk are located outside the biradical molecule, i.e. in the
solvent, similar to our previous observation with AsymPol
derivatives.28

An intriguing observation for AsymPol-TEK is that at |νoff −
νBulk| ≈ 2 MHz, there is a reproducible overshoot of the
enhancement by ∼1−2%. Note that the actual signal intensity
did not increase with respect to the reference experiment
without saturation (see Figure S2). Rationalizing this minor
observation is beyond the scope of this work.
In the case of AsymPol-TEK, 50% of the enhancement is

recovered at |νoff50% − νBulk| ≈ 0.2 MHz, corresponding to a
factor ∼10 smaller than with AMUPol or TEKPol. This value
agrees with the ratio of electron−electron spin cou-
plings:25,28,48

D J
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A hyperfine coupling value of 0.2 MHz corresponds to
protons located at ∼0.7 nm, i.e., relatively far from the NO• as
depicted in Figure 2d. Thus, for AsymPol-TEK, only protons
that are not in the vicinity of the nitroxide (i.e., those that are
either far on the backbone or in the solvent), are essential for
DNP. To further confirm this observation, selectively
deuterated derivatives AsymPol-TEK-d8 and AsymPol-TEK-
d12 were synthesized (see SI), in addition to the aforemen-
tioned AsymPol-TEK-d20 (Figure 1e), in which the protons
with the strongest hyperfine couplings are removed. The DNP
enhancement and characteristic DNP buildup time (TB) for
these compounds are shown in Figure 3a and b, respectively.

Figure 3. Evolution of (a) DNP enhancements and (b) build-up time
as a function of deuteration level in AsymPol-TEK. In (a),
experiments and simulations are shown in dark and light gray,
respectively, and in (b) experiments and simulations are shown in
dark and light blue, respectively.
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The enhancements are similar for all isotopologues and fall in
the range between 50 and 58. Some variation is observed in the
buildup times, ranging from 1.6 to 2.3 s. The fact that the
enhancements are similar, supports the idea that the strongly
coupled protons do not play an essential role in the DNP. This
is in stark contrast to TEKPol, where smaller enhancements
were obtained upon deuteration.27,28 It should be noted that
the variations in the build-up times, which may appear at first
to follow the previous trends observed by Venkatesh et al. of
increased build-up times with more deuteration,27 was found
to be due to slightly lower concentrations of the deuterated
samples.
The AsymPol-TEKs should have the same geometry/

magnetic parameters as previously reported,36 because their
liquid state EPR spectra are identical (Figure S4). Accounting
for the differences in concentration of the biradicals, it is
possible to perform quantitative quantum simulations. Using
large spin system simulations24,25,29 and DFT/Molecular
Dynamics25,29 as input parameters for the hyperfine couplings
on the biradicals, both the enhancements and buildup time are
very well reproduced (Figure 3). As the MAS-DNP simulations
are quantitatively accurate, we used them to check the impact
of deuteration, assuming identical biradical concentration. The
results (Figure S7) indicate that identical buildup should
indeed be expected for all deuteration levels. As such, this
confirms the outcome of previous work16,28 and of the
NUDOR experiments: under a magnetic field of 14.1 T,
AsymPol-TEK predominantly hyperpolarizes the protons of
the solvent directly, and that the relayed hyperpolarization
through the protons in the biradicals is less favorable.
In summary, we have shown that NUDOR can be used to

detect strongly coupled protons in nitroxide biradicals. This
experiment allows identification of the protons that most
contribute to for the hyperpolarization of the bulk nuclei. At
14.1 T, it provides a definite and direct proof that the protons
in the biradicals of TEKPol and AMUPol contribute to the
DNP under MAS, while the protons in the AsymPols play a
minor role, as previously proposed.28 We anticipate that the
NUDOR profiles for a given biradical may depend on the
experimental conditions, such as the magnetic field and the
MAS frequency, as well as the length and rf power of the
saturation pulse. For example, |νoff(50%)| should increase for faster
MAS experiments based on previous simulations.26 At higher
magnetic field is likely that the |νoff(50%)| of AsymPol-TEK will
increase at as RCE diminishes, meaning that protons in the
biradical may play a greater role. Reciprocally, the |νoff(50%)|
should decrease for AMUPol and TEKPol as the field is
lowered. The NUDOR experiment thus provides a simple way
to tune the properties of a given biradical for a set of
experimental conditions. Finally, in cases where nuclear spins
close to the polarizing agent are critical to the DNP
mechanism (for example TEKPol/AMUPol), the NUDOR
and ENDOR profiles appear to share similar features. It may
thus be possible to apply the method to other polarizing
agents, such as monoradicals49,50 metal ions,51,52 or other
species53−55 to determine, at least partially, the corresponding
ENDOR spectra of nuclear spins that are very close to the
electron, without the need of an EPR instrument.
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