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The weakly bending rod (WBR) model of double-stranded DNA (dsDNA) is adapted to analyze the internal
dynamics of dsDNA as observed in electron paramagnetic resonance (EPR) measurements of the spin-lattice
relaxation rate, R1e, for spin probes rigidly attached to nucleic acid-bases. The WBR theory developed in
this work models dsDNA base-pairs as diffusing rigid cylindrical discs connected by bending and twisting
springs whose elastic force constants are κ and R, respectively. Angular correlation functions for both rotational
displacement and velocity are developed in detail so as to compute values for R1e due to four relaxation
mechanisms: the chemical shift anisotropy (CSA), the electron-nuclear dipolar (END), the spin rotation
(SR), and the generalized spin diffusion (GSD) relaxation processes. Measured spin-lattice relaxation rates
in dsDNA under 50 bp in length are much faster than those calculated for the same DNAs modeled as rigid
rods. The simplest way to account for this difference is by allowing for internal flexibility in models of DNA.
Because of this discrepancy, we derive expressions for the spectral densities due to CSA, END, and SR
mechanisms directly from a weakly bending rod model for DNA. Special emphasis in this development is
given to the SR mechanism because of the lack of such detail in previous treatments. The theory developed
in this paper provides a framework for computing relaxation rates from the WBR model to compare with
magnetic resonance relaxation data and to ascertain the twisting and bending force constants that characterize
DNA.

Introduction

The nature of internal motions in double-stranded DNA
(dsDNA) is an ongoing area of nucleic acids research owing to
the demonstrable importance of dynamics in explaining the
mechanisms by which DNA functions.1 In 1970, the time-
resolved decay in the fluorescence polarization anisotropy (FPA)
from ethidium intercalated between base-pairs revealed that
DNA in solution is a flexible polymer that undergoes both about-
axis twisting and bending.2 To explain these data, Barkley and
Zimm developed a continuous elastic model of internal Brown-
ian twisting and bending motions of the double helix.3 Concur-
rently, Allison and Schurr generated a theory for the twisting
motion contribution to the FPA decay in which DNA is
represented by a series of identical rigid rods connected by
Hookean torsion springs.4 This discrete model was subsequently
extended by Schurr and co-workers to include bending motions
for DNA modeled as spherical beads in a chain5 coupled to
nearest neighbors by a harmonic potential characterized by a
torsion, R, and a bending, κ, elastic constant. This theory is
referred to as the weakly bending rod (WBR) model. The
discrete model provides a physical model with which to interpret
the data from a variety of measurements on DNA. For example,
the decay of the FPA from ethidium bromide intercalated in
DNA is directly related to the mean square amplitudes and decay
times for each of the normal modes of deformation6–9 and hence
the torsion elastic constant. Estimates of the dynamic persistence
length are extracted from data obtained from a variety of

measurements of DNA5,9,10 using techniques that include
transient polarization gratings,11 transient photodichroism,12 and
electric birefringence.13 The successes of the WBR model in
explaining results from optical spectroscopy of dyes intercalated
into DNA prompted Robinson and co-workers to apply a similar
model to electron paramagnetic resonance (EPR) data from a
spin-labeled intercalating probe.14–16 In adapting the Schurr
model, Robinson and co-workers combined both bending and
twisting into a single unified model in which the base-pairs of
DNA are modeled as cylinders whose geometry is characterized
by the mean DNA hydrodynamic radius and average base-pair
height for the B family conformations. These cylindrical subunits
are connected by bending and twisting springs, also denoted
by κ and R, respectively. The unified model offers simplicity
at the expense of considering translational diffusion. However,
translational diffusion is not measurable by EPR, and hence this
sacrifice is not significant. In this paper, for simplicity, we will
refer to this unified bending and twisting model as simply the
WBR model.

In experiments using intercalators, there is little specific
control over the distribution of dyes or probes along the DNA.
Hence, measurements in such systems provide information on
the average behavior of the duplex rather than site-specific data.
In order to examine properties of duplex DNA as a function of
sequence and position, great effort has been expended in
developing probes that can be covalently bound to specific sites
for use in EPR10,17–23 and in labeling specific atoms by isotopic
substitution to prepare sequences for NMR studies.10,24–27

EPR labeling experiments have focused on replacing natural
bases with analogs, modified to contain the EPR active nitroxide
radical as an integral part of the base. Early site-specific probes
possessed large amplitudes of motion relative to the macromo-
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lecular reference frame, as characterized by order parameters,
S, falling below 0.4.22,23 (The order parameter generally ranges
from 0 to 1 with lower values indicating larger amplitudes of
internal motions.) Subsequent efforts lead to the synthesis of
more immobile probes as characterized by order parameters of
0.5, 0.8, and, more recently, 0.95.19,20,28 In this paper, we present
data using a recently developed spin probe, Ç (“C-spin”), that
reports more faithfully on the DNA base motions to which it is
rigidly locked.29 The probe has a planar, rigid structure, rather
than the single-bond tether common in nucleic acid spin probes
(Figure 1). It has successfully been incorporated into a variety
of nucleic acid sequences, and, in all cases, only nominally
affects DNA duplex stability, presumably by effectively mim-
icking cytosine in its base-pairings.29 Data supports the expecta-
tion that this probe is sensitive to the internal deformations of
the DNA10,29 and to processes with rotational correlations times
as long as a microsecond.30,31 These successes in syntheses have
generated EPR spin probe data at specific base-pairs21 in
dsDNAs of lengths up to 50 base-pairs.

The WBR model has been applied in both EPR and NMR
experiments on DNA to uniquely distinguish between tumbling
and rapid internal motions.10,21,27,32–35 Continuous wave (CW)
EPR has been used in our laboratory to characterize the internal
motions of DNA and RNA, and we have reported bending force
constants and have shown that the persistence length determined
from early time bending dynamics is about two- to threefold
larger than that from long time-scale motions.21 This result is
important because it demonstrates that the bending of DNA must
ultimately be described by an internal potential that responds
to different length scales within the duplex DNA.

While CW-EPR has provided valuable insight into the nature
of the internal dynamics of nucleic acids, it is primarily sensitive
to motional processes that are fast enough to compete with the
rapid spin-spin dephasing rate, R2e. In contrast, pulsed satura-
tion recovery (pSR) EPR measures processes that compete with
the spin-lattice recovery rate, R1e, and hence affords a window
into slower motions that characterize collective internal defor-
mations of the DNA filament. The R1e is particularly sensitive
to motional processes, with a characteristic relaxation time, τ,
on the order of ω τ ≈ 1, where ω is the spectrometer frequency.
In the case of EPR, the spectrometer frequency is generally
between 1 and 35 GHz. The WBR theory predicts that the time
constant, τ, for internal motions of DNA are on the subnano-
second scale and therefore ideally suited to be detected by
spectrometers in the 1 to 10 GHz range, making this a technique
well-suited to measure internal motion in nucleic acids. We have
previously demonstrated that pSR measurements on DNA are
experimentally possible,36 but here we report the first detailed
measurements of R1e on a series of dsDNA. This R1e data serve
as the motivation for the present effort to further develop and
extend the WBR model to make predictions for site-specific
dynamics. The model for calculating R1e based on a rigid rod-

like molecule is shown to be insufficient to explain the data.
The discrepancy between a simple motional model (previously
developed37) and the data we present here is compelling
motivation to develop an analysis of the pSR DNA spin-lattice
relaxation rates, in terms of the WBR model, which allows for
internal twist and flexure.

As further impetus to pursue pSR EPR, we turn to other work
in which this technique has been successfully applied to
biological systems to measure the solvent accessibility of spin-
labeled residues on membrane proteins and to observe the
properties of lipid membranes.36,38–44 There is a precedent for
the usefulness of pSR experiments in the study of dynamics;
Hubbell has suggested that if the R1e internal dynamic modes
are known at particular sites on a protein, then, for example,
the local backbone fluctuations can be ascertained.45

R1e rates are produced by four mechanisms. The largest of
these, in most cases, is the electron-nuclear dipolar (END)
coupling between the nitroxide electron and the nitrogen (14N)
nucleus.37 The other three mechanisms are spin rotation (SR),
chemical shift anisotropy (CSA), and generalized spin diffusion
(GSD). We have described previously how the dynamics of an
anisotropically tumbling rigid rod-like molecule can be incor-
porated into the expressions for the electron spin-lattice
relaxation rate37 and have shown how the diffusive dynamics
of this simple model can be obtained from fitting these equations
to pSR EPR data.44,45 The current work endeavors to incorporate
the more elaborate rotational displacement and velocity cor-
relation functions into the various spin-lattice mechanisms so
as to produce expressions for R1e rates based on the WBR model.
In doing so, we provide a computational method to extract
information on the dynamics of DNA from relaxation data.
Specifically, we adapt the WBR model so that it can be used to
generate rotational position and velocity correlation functions
to insert into R1e rate mechanisms. Special attention is given to
the spin-rotation mechanism for it requires a new expression
for the angular velocity autocorrelation function. This correlation
function has not been presented in the literature and is one of
our main contributions in this work.

EPR22,23,46 and NMR35,47–49 relaxation data have been char-
acterized by use of the Lipari-Szabo (L-S) model-free
approach.50 The goal of the model-free approach is to determine
the order parameters and internal correlation times from
experimental line widths and relaxation data.47 However, CW-
EPR data cannot be directly analyzed by the L-S approach,
because the spectra are sensitive to dynamics that broaden the
lines beyond the limits of applicability of the L-S method.50,51

The R1e experimental data obtained by pSR, on the other hand,
can be modeled by the L-S approach, as will be demonstrated
in this work. We shall identify the correspondence between the
correlation functions derived under the WBR model with the
parameters in the L-S model. In doing so, we lend physical
meaning to model-free L-S order parameters by linking these
to the model-dependent WBR theory. The result is a data
analysis scheme that is a hybrid between the two approaches.
It combines the simplicity of the L-S method with the
substantive predictions made by the WBR model. We will show
that the WBR model can be used to determine the dependence
of the order parameters on label position, bending force
constants, and length of the DNA.

The WBR model predicts that the decay of the autocorrelation
functions of the internal modes at different time regimes have
varied power law dependencies.4,52 We take advantage of that
by using stretched exponentials to model the autocorrelation
functions obtained from the WBR model. We will develop the

Figure 1. Rigid spin label Ç is shown base-paired to a natural
guanine.29
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appropriate correlation functions in terms of the WBR model
and demonstrate how to obtain the spectral density functions
from the Fourier transform of a stretched exponential. This will
provide a basis for including the internal dynamics of the WBR
model in the analysis of R1e.53–57

Our goal in this paper is to demonstrate that experimental
R1e rates contain information on the internal motions of DNA
and that the WBR model can be adapted to analyze those
motions in terms of the twisting and bending force constants.
We develop spectral density functions required to analyze the
dynamics. The methods developed here will provide a practical
framework to relate experimental data to internal modes of
motion in biopolymers.

Theory

1. Spin-Lattice Relaxation. We have demonstrated previ-
ously that the principal mechanisms responsible for anisotro-
pically driven spin-lattice relaxation can be well-understood
in the liquids regime using the formalism of the Redfield
theory.37 Previous work in this laboratory has developed the
theoretical framework in which the dominant Hamiltonians of
nitroxide-based EPR probes are used to obtain expressions for
R1e.37,58 In this theory, the Redfield spin-lattice relaxation rate
is directly related to stochastically fluctuating, nonsecular EPR
Hamiltonians:

R1e )∫τ)0

∞
trace{ [Oz, H ′ (0)], [H̃′(τ),Oz

†]} dτ (1.1)

where H′ is a perturbation Hamiltonian that consists of the spin
operators and a fluctuating lattice contribution, usually in a form
that is bilinear in spin and lattice variables. Oz ∝ Sz is the
operator associated with the electron spin-lattice relaxation and
satisfies the requirement that trace{Oz

†Oz} ) 1. The Hamilto-
nian, H′, in eq 1.1 is the sum of the Hamiltonians for each of
the four mechanisms introduced below. Theses four mechanisms
are the electron-nuclear dipolar (END), chemical shift anisot-
ropy (CSA), spin rotation (SR), and generalized spin diffusion
(GSD). The rates associated with each of the four mechanisms,
at the level of approximation embodied in eq 1.1, add
independently to give the total spin-lattice relaxation rate:

R1e )R1e
END +R1e

CSA +R1e
SR +R1e

GSD (1.2)

The electron-nuclear dipolar (END) term encompasses the
magnetic dipole-dipole interaction between the electron spin
and the local nuclei, while the chemical shift anisotropy (CSA)
is due to anisotropy in the coupling between the electron spins
to the applied, external magnetic field. Both the END and the
CSA interactions depend upon the orientation of the spin label.
The cross correlation between the END and the CSA Hamil-
tonians has been developed elsewhere58 but is neglected here
for simplicity. The spin rotation (SR) relaxation arises from a
coupling between the magnetic moment of the electron spin
and the angular velocity of the spin probe with respect to the
external fixed reference frame. Utilizing a relaxation rate
formalism previously developed for rigid rod-like lipids,37 we
will, in the following sections, provide explicit expressions for
these first three mechanisms in terms of the rotational dynamics
of DNA modeled by the WBR theory. The final rate is due to
generalized spin diffusion (GSD) relaxation. GSD provides an
important contribution to R1e, especially at X-band frequencies,
and must be considered in any practical analysis of the actual
relaxation rates observed in experimental work. Unfortunately,
at the present, a definitive connection between the observed
diffusion of the probe magnetization to the surrounding spins

and molecular dynamics is not well-established. We therefore
provide a functional form of this mechanism in terms of a
generic effective diffusion time that accounts for the data but
fails to provide a direct connection to the dynamics of DNA,
the probe, and the local environment.

We begin with a discussion of the general form for each term
of the relaxation rate. This provides a framework into which
any model for the dynamics of the system can be inserted. We
then derive expressions for the dynamics of the system in terms
of spectral densities of the autocorrelations for rotational
displacement and velocity. We emphasize spin rotation as it is
often neglected and, as such, has an underdeveloped theory.
Following this general introduction, we develop in detail the
rotational autocorrelation functions for the WBR model that are
applicable to pSR data from site-specifically labeled DNA and,
in doing so, present a novel development of the SR spectral
density functions using the angular velocity correlation functions
appropriate for internal deformations. We then demonstrate how
the L-S method of analysis can be adapted to place the WBR
results in terms of the common parameters that appear in the
model-free approach. A benefit of the correspondence we
establish between the modified L-S method and the WBR
model results is a computationally tractable framework for
analysis of EPR data. We provide an explicit example of how
this is done for the SR mechanism to conclude the theory
section.

1.A. Electron-Nuclear Dipolar Interaction. The END
mechanism is the electron analogy to dipolar relaxation in NMR.
The relaxation rate, computed from the spectral density func-
tions, is found in many treatments37 and standard texts:59

R1e
END ) 2

9
I(I+ 1) ∑

p,p′)-2

2

Wp,p′
ENDR(Jp,p′(ωe)) (1.3)

The rate of relaxation is proportional to the real part of the
spectral density function, J p, p’(ω e), which is the one-sided
Fourier transform of the position correlation function:

Jp,p′(ωe))∫τ)0

∞
Gp,p′(τ) e-iωeτ dτ (1.4)

where G(τ) is the angular displacement correlation function.
Because the EPR pSR experiment measures the rate of the
relaxation of the electron, the spectral density function is
evaluated only at the spectrometer frequency, ω ) ω e. G(τ) is
expressed in terms of the ensemble average of the correlation
function between elements, Dp,q2, of the Wigner rotation matrix
(WRM), D2:

Gp,p′(τ)) δq,q′〈Dp′,q′
2* (Ω(τ))Dp,q

2 (Ω(0))〉 (1.5)

This position correlation function is independent of the value
of the indices (q and q′) which are associated with the angle γ
in the Euler rotation sequence, Ω ) (R, �, γ), that carries the
END coupling tensor, a ) A - aj1, from the laboratory to the
principal axis frame in which a is diagonal. A is the hyperfine
tensor, and aj ) trace{A}/3. Subtraction of aj removes the contact
term between the electron and the nucleus and leaves the dipolar
part of A in the END Hamiltonian. The principal axis frame, in
which a is diagonal, is stationary in the molecular frame to the
extent to which the probe is rigidly attached. As such, R1e

END is
a measure of internal deformations of the macromolecule, as
well as its anisotropic rigid-body spinning or end-over-end
tumbling, otherwise referred to as the uniform modes of rotation.
The principal axis frame (PAS), A, of a will not in general be
coincident with the molecular frame, D, in which the local
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diffusion tensor is diagonal. The matrix, WEND, allows for a
static rotation ΩD-A between these two frames:

WEND )D2†(ΩD-A)(RR†)D2(ΩD-A) (1.6)

where R† ≡ (R2 R1 R0 R-1 R-2) ) �5[a- 0 �2/3(a+ - azz) 0
a-] and R ( ) (Ryy ( Rxx)/2. The elements axx, ayy, and azz are
the diagonal components of a that is diagonal in the A frame.

1.B. Chemical Shift Anisotropy. The CSA relaxation mech-
anism is of a form similar to that of the END:

R1e
CSA ) 1

5 ∑
p,p′)-2

2

Wp,p′
CSAR(Jp,p′(ωe)) (1.7)

The spectral density, Jp,p′(ωe), is the same as that used to
evaluate the END relaxation rate given in eq 1.4. Here, the
coupling takes place between the electron spin and the magnetic
field, H ) Hẑ, oriented by ẑ, which is a unit vector in the
laboratory z direction, via the anisotropic CSA tensor, G. The
magnitude of the field, H, is related to the spectrometer
frequency, ωe, by ωe ) gj(�e/p)H, where �e is the Bohr
magnetron and gj ) (1/3)trace{G}. Ordinarily, the isotropic part
of G is removed from the Hamiltonian as it plays no part in
longitudinal relaxation. The remaining anisotropic CSA tensor
is denoted by g ≡ G - gj1. In the CSA principal axis frame, G,
this tensor is given by

g ) (gxx 0 0
0 gyy 0
0 0 gzz

) (1.8)

The transformation matrix WCSA has the same form as WEND

in eq 1.6. The variables in eq 1.7) are again expressible in terms
of the WRM functions:

WCSA )D2†(ΩD-G)(γγ†)D2(ΩD-G) (1.9)

where γ† ) (ωe�5/gj)(g- 0 �2/3(g+ - gzz) 0 g-), g ( ) (gyy (
gxx)/2, and ΩD-G is the rotation from the CSA principal axis
frame, G, to the molecular frame, D, in which the diffusion
tensor is diagonal.

1.C. Spin Rotation. Unlike CSA and END relaxation mech-
anisms, spin rotation (SR) has received only minimal attention
in the literature.60–63 For this reason, we shall spend more time
here to describe in detail the SR Hamiltonian and relaxation
rate.

The SR Hamiltonian is given by64

HSR )
-SR(ΩL-D(t))R(ΩD-G)(G - gfree1)R(ΩD-G)R(ΩI-D)ωI(t)

(1.10)

where ωI is the angular velocity in Cartesian coordinates of the
nitroxide in the principal axis frame, I, of the molecular inertial
tensor, I. S is the electron spin operator in the laboratory-fixed
frame, L, and is also expressed in Cartesian coordinates. G is
the CSA full coupling tensor, and gfree ) 2.0023 is the g factor
of the free electron. The rotation matrixes that connect the
reference frames of ωI, G, and S are inserted between each of
these in eq 1.10 and are all time-independent, with the exception
of R(ΩL-D(t)). Analytic expression for angular displacement
correlation functions involving this rotation matrix that are
needed to calculate R1e

SR, are more easily formulated in a spherical
basis set. This transformation from rectilinear to spherical
coordinates is accomplished through use of the matrix operator,
U:

U ) 1

√2( 1 -i 0
0 0 √2
-1 -i 0

) (1.11)

The transformation, U, converts the Cartesian spin variables
labeled x, y, and z to their spherical counterparts labeled -1, 0,
and 1. The Cartesian spin operator is denoted by S and its
spherical counterpart by S. U also converts the Cartesian rotation
matrix into a first rank WRM, D.1 For simplicity, we assume
here that the I frame is coincident with the PAS of the molecular
diffusion tensor, or D frame, so that R(ΩI-D) ) 1. By
implementing these transformations, eq 1.10 can be rewritten
as

HSR )-S†D1†(ΩL-D(t))gω1(t) (1.12)

where g ) UR-1(ΩD-G) · (G - gfree1)R(ΩD-G) Note that although
g is non-Hermitian, the overall Hamiltonian remains self-adjoint.
Equation 1.12 is now used to compute R1e

SR as instructed by the
Redfield approximation in eq 1.1. As this computation has been
performed elsewhere, we now summarize the results that
ensue.37

R1e
SR retains the form of a product between a time-independent

matrix, WSR, that accounts for the fixed I to D and D to G frame
rotations, and a spectral density function, JSR:

R1e
SR ) 2 ∑

p,p′)-1

1

∑
m,m′)1

3

W p,p′
SRm,m′R(J p,p′

SRm,m′(ωe)) (1.13)

The m index refers to the Cartesian components (x, y, and z)
of the angular velocity, and the p index (-1, 0, and 1) identifies
the spherical components of the WRM elements. The compo-
nents of the time-independent matrix WSR is related to products
of g matrix elements:

W p,p′
SRm,m′ ) gp′,m′

/ gp,m (1.14)

The spectral density function for spin rotation is:

J p,p′
SRm,m′(ωe))∫τ)0

∞
G p,p′

SRm,m′(τ) e-iωeτ dτ (1.15)

The correlation function for spin rotation, G p,p′
SRm,m′(τ), that

appears in eq 1.15 contains both the autocorrelation of rotational
displacement and the angular velocity:61,63

G p,p′
SRm,m′(τ))

δn,n′〈D1*(ΩL-D(0))p,nD
1(ΩL-D(τ))p′,n′(ωI(0)ωI

†(τ))m,m′ 〉
(1.16)

The fact that the angular velocity correlation functions are
evaluated in the molecular inertial tensor PAS, I, (or, equiva-
lently, the diffusion tensor PAS, D, under our assumption above)
leads to the correlation functions requiring only first rank instead
of second rank WRMs that appear in the END and CSA
relaxation mechanisms.

A reasonable assumption that the angular velocity correlation
functions are statistically independent of the reorientation
correlation functions allows separate ensemble averaging of the
position and velocity correlation functions:37,61

G p,p′
SRm,m′(τ))

δn,n′〈D1*(ΩL-D(0))p,nD
1(ΩL-D(τ))p′,n′ 〉 × 〈 (ωI(0)ωI

†(τ))m,m′ 〉

(1.17)

Development of the correlation functions for the angular
velocity correlation functions has been performed for rigid
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anisotropically diffusing bodies previously.37 In section 2, below,
we present a detailed derivation of angular velocity correlation
functions specific to internal motion in DNA as idealized in
the WBR model.

1.D. Generalized Spin Diffusion (GSD). We conclude part
1 of Theory with a generalization of the spin diffusion processes
(GSD) that is discussed most frequently in the context of
NMR,17,65 but is equally important for electron relaxation.37,66

Because GSD involves diffusion of magnetization among spins,
there is only an indirect connection with the molecular motions
of the system. Therefore, for the present, this mechanism
remains a constant for all nitroxide spin systems. There is,
however, a fundamental connection between the spin diffusion
and the diffusive processes that drive the molecular system. In
general, there is diffusion of the solvent nuclear polarization in
the network of the surrounding solvent protons by nuclear
dipole-dipole “flip-flops”. The proton-proton spin flip-flop
transition rate occurs on a 10 ps time scale for water at around
20 °C.59 The form of the relaxation rate for this spin-diffusion
mechanism66 adapts de Gennes’s theory of spin-diffusion to the
case of electron relaxation.67

R1e
GSD )R1e,max

SD ( 2wxτd

1+ (ωeτd)
3⁄2)1⁄4

(1.18)

τd is the relative solvent-nitroxide translational diffusion time,
and R1e,max

SD ) 0.15 Mrad/s at X-band frequencies. wx is the
X-band reference frequency: wx ) 2π × 9.3 GHz.66 When
ωeτd ) 1 and the spectrometer resonance frequency is 9.3 GHz,
R1e

GSD ) 0.15 Mrad/s.37

Having summarized the four mechanisms that contribute
significantly to nitroxide spin-lattice relaxation, we now turn
to the evaluation of spectral density functions for the WBR
model of dynamics of DNA.

2. WBR Model for DNA Internal Dynamics. We will
briefly review the dynamics of the WBR model that is described
in greater detail elsewhere.21,52,68 Our focus in this paper is to
develop velocity autocorrelation functions for the WBR model
that are applicable to the SD relaxation mechanism. We will
begin the discussion of the WBR model by summarizing the
results for twisting motions. We then show how the methods
used in deriving the twisting correlation functions can be
extended to deal with the more complicated bending dynamics.

2.A. Twisting. Twisting of the N discs in the WBR model is
governed by the Langevin equation. The twist of each disk
relative to the equilibrium position is indicated by the angle φi.
Each disk has the same moment of inertia, I, for the rotation
about the axis of symmetry, and a friction factor, γ, that accounts
for viscous drag. N - 1 equivalent Hookean twisting springs
with spring constant, R, between neighboring discs produce
restoring torques that define the lowest energy state of the WBR.
The effects of the solvent are modeled by Gaussian random
torques, Γi(t). The Langevin equation for twisting is expressible
for the ith disk in terms of these variables:

Iφ
..

i(t)+ γ�i

.
(t)+R{�i+1(t)-�i(t)}+R{�i-1(t)-�i(t)})

Γi(t) (2.1)

The N Langevin equations for all discs in the WBR can be
written together in terms of a matrix equation:

I�
..

(t)+ γ�
.
(t)+RA�(t))Γ(t) (2.2)

where

�(t)) (�1(t)
l

�N(t) ) (2.3)

and

A ) (-1 1 0
1 -2 1
0 1 ···

) (2.4)

where A here is not to be confused with the END coupling
tensor.

The total potential energy for the twisting, U, can be written
in terms of A:

U) 1
2
R�†A� (2.5)

The A matrix contains all of the nearest-neighbor interactions
but none of the adjustable constants. It is a tridiagonal real and
symmetric matrix.5 As such, A may be diagonalized by an
orthogonal transformation, Q for which Q†Q ) 1. The
transformation matrix, Q, like A, depends only on the number
of discs comprising the DNA and produces the diagonal
eigenmatrix, Λ, comprised of the eigenvalues of A:

Q†AQ )Λ (2.6)

Formally, the inverse of A is given by

A-1 )QΛ-1Q† (2.7)

However, Λ contains a single zero eigenvalue, which
physically represents the rotation of the entire molecule, more
commonly referred to as the uniform mode. Therefore, the
inverse in eq 2.7 is not well-defined. Because the analysis to
follow requires this inverse for the nonzero eigenvalues, A-1 is
computed with the zero eigenvalue in Λ, and the associated
eigenvector in Q is removed. This form of the inverse is called
the principal inverse or pseudoinverse. The removal of the
equation associated with the zero eigenvalue has been carefully
developed by Schurr and co-workers.5

The equation of motion can now be written in terms of
uncoupled normal twisting modes, represented here by the vector
G of length N:

IF̈(t)+ γḞ(t)+RΛF(t))Q†Γ(t) (2.8)

where the relationship between the normal modes and twist
angle is given by:

�(t))QF(t) (2.9)

Equation 2.8 is solved to determine the twisting autocorre-
lation functions for the normal modes:

CF(t) ≡ 〈F(0)F†(t)〉 (2.10)

The normal mode correlation functions are then transformed
with the matrix Q to produce the desired twist angle correlation
matrix:

C(t) ≡ 〈�(0)�(t)〉 )QCF(t)Q
† (2.11)

C(t) contains all possible N2 position auto- and cross-
correlation functions. The corresponding twisting velocity
correlation functions for the normal modes are denoted by

VF(t) ≡ 〈Ḟ(0)Ḟ(t)〉 (2.12)

and are used to provide an expression for the auto- and cross-
correlation twisting angle velocity matrix:
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V(t) ≡ 〈�̇(0)�̇(t)〉 )QVF(t)Q
† (2.13)

Equations 2.8 and 2.10 are combined to produce N indepen-
dent second order ordinary differential equations. Since the
random torques are uncorrelated with the velocity and position
of ith modes, these differential equations take the following
form:

IC̈Fi
(t)+ γĊFi

(t)+RΛiCFi
(t)) 0 (2.14)

The solution to this differential equation is

CFi
(t)) kT

2RΛi
{( 1- 1

Si
) e-ri+t + (1+ 1

Si
) e-ri-t} (2.15)

where

ri()
γ
2I

{1( Si} (2.16)

and

Si )�1-
4IΛiR

γ2
(2.17)

The results for all N modes are combined in matrix equation
form, and the transformation matrix Q is used to obtain the
correlation matrix for the angular displacements, C(t):

C(t))QCF(t)Q
†

) kT
2R

QΛ-1S-1{(S - 1) e-r+t + (S + 1) e-r-t}Q†

(2.18)

where

r()
γ
I

{1( S}
2

(2.19)

and

S )�1- 4Λ
(R / γ)

(γ / I)
(2.20)

Notice that the amplitude in eq 2.15 diverges for the i ) 1,
or uniform mode, for which Λ1 ) 0. The uniform mode, F1(t),
and its associated correlation function, CF1(t), must be treated
differently. In this case, the amplitude is derived from the
“difference” displacement correlation function, δCF1(t) ) 〈(F1(t)
- F1(0))2〉 , which can be shown52 to have the property that

〈(F1(t)-F1(0))2〉 ) 2
kT
γ

t (2.21)

Unlike the uniform mode, the internal mode amplitudes are
derived from the equilibrium requirement on the CFi(t); that is,

〈Fi(t)Fj(t)〉 ) 〈Fi
2(0)〉

) kT
ΛiR

(2.22)

where the first equality derives from the fact that the normal
modes are uncoupled and from the fact that the diffusive process
is assumed to be a stationary process. The entire set of internal
correlation functions amplitudes can be written in a compact
matrix form:

C(0)) 〈�(0)�†(0)〉

) 〈�(t)�†(t)〉

) kT
R

QΛ-1Q†

) kT
R

A-1 (2.23)

where the uniform mode has been excluded from the inverse
and is treated separately, as discussed above.

Also note that in the over damped regime, which is the limit
in which treatments in the literature commonly operate, C(t) is
found by letting the moment of inertia go to zero:

lim
If0

C(t)f
kT
R

QΛ-1e-
a

γ
ΛtQ† ) kT

R
A-1e-

a

γ
At (2.24)

The normal mode velocity autocorrelation functions are most
directly derived using the following relation:

VFi
(t) ≡ 〈Fi

.
(0)Fi

.
(t)〉

)-〈Fi(0)Fi

..
(t)〉

)-
d2CFi

(t)

dt2
(2.25)

This relationship is derived as follows. Note first that

∂〈Fi(x)Fi(t+ x)〉
∂x

) 0 (2.26)

because CFi(t) describes a stationary Markov process and is
therefore independent of the starting time, x. Then

∂〈Fi(x)Fi(t+ x)〉
∂x

) 〈 Ḟi(x)Fi(t+ x)〉 + 〈Fi(x)Ḟi(t+ x)〉

) 0 (2.27)

so that, when x ) 0, we obtain

〈 Ḟi(0)Fi(t)〉 )-〈Fi(0)Ḟi(t)〉

≡-
dCFi

(t)

dt
(2.28)

In a parallel fashion, we can get the relation among higher
derivatives

∂〈Fi(x)Ḟi(t+ x)〉
∂x

) 〈 Ḟ(x)Ḟ(t+ x)〉 + 〈F(x)F̈(t+ x)〉

) 0 (2.29)

and set x ) 0 to arrive at eq 2.25. Equation 2.25 permits us to
use our results from the normal mode displacement correlation
function to directly compute VFi(t) by simply taking two
derivatives of the expression in eq 2.15. We obtain as a solution

VFi
(t)) kT

I
1

2Si
{ (1+ Si) e-ri+t - (1- Si) e-ri-t} (2.30)

Unlike the position autocorrelation function, note that the
velocity autocorrelation function for the uniform mode is well-
behaved for the uniform mode in which Λ1 ) 0:
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VF1
(t)) kT

I
e-

γ
I

t (2.31)

It is important to note that eq 2.31 is precisely the autocor-
relation function obtained for a single disk of moment of inertia,
I, and friction factor, γ.69

We again use a matrix equation to succinctly express the set
of all velocity correlation functions:

V(t))QVF(t)Q
†

) kT
I

Q
S-1

2
{ (1+ S) e-r+t - (1- S) e-r-t} Q†

(2.32)

Since r ( and S are diagonal, VF(t) matrix is also diagonal.
The initial velocity autocorrelation is the same for each mode,
including the first, or uniform, mode, and is given by

V(0)) kT
I

1 (2.33)

where 1 is the N by N identity matrix.
An important consequence of the fluctuation-dissipation

theorem is that the diffusion coefficient is the integral of the
velocity autocorrelation function. Hence, the diffusion of a single
disk, Ddisk, is a functional of the velocity autocorrelation of the
single disk,69 which, in turn, is an integral over the uniform
mode result, eq 2.31, by virtue of the indistinguishability of
the dissipative dynamics of the single disk and those of the
uniform mode of the chain of identical discs:

Ddisc )∫0

∞
Vdisc(t) dt

≡∫0

∞
VF1

(t) dt

) kT
γ

≡ D1 (2.34)

The integral of all other normal modes of the velocity
autocorrelation function are zero. Hence, the twisting diffusion
coefficient for the entire set of N discs is D| ) D1/N.

The decay rate of the velocity autocorrelation function, V1(t),
is B1 ) γ/I. This leads to a relation between diffusion and
viscous drag called the Hubbard relation37,70 in magnetic
resonance literature:

D1B1 )
γ
I

kT
γ

) kT
I

(2.35)

This useful relation connects the decays of the velocity
position correlation functions. Notice that the decay of the
velocity auto correlation is independent of the number of discs:

B|)B1 )
γ
I
) Nγ

NI
(2.36)

This is because both the friction and inertial tensor elements
scale with the number of discs. Similar relations will be
developed for the bending modes below.

The diffusion coefficient matrix for the entire system is the
integral over the complete set of velocity correlation functions:

D|)∫o

∞
V(t) dt

)Q∫0

∞
VF(t) dtQ†

)QEQ†kT
γ

)
D1

N [1 1 · · ·
1 1
l ···

] (2.37)

where E ≡ 1 - Λ-1Λ contains a single nonzero element, Ei,j

) δj,1δi,1. This result shows that each and every element of the
N × N matrix for the parallel rotational diffusion tensor, D|,
has the same value and that its magnitude is 1/N times the
coefficient for a single disk.

2.B. Bending. In our development of the bending correlation
functions, we shall follow closely the definitions found in the
WBR model as described by Song et al.,5 except our model
will use, as its fundamental building blocks, cylindrical discs
with height, h ) 3.4 Å and a radius on the order of r ) 12 Å
rather than the larger spheres used by Song et al. The parallels
between the two models and our justification for this modifica-
tion can be found elsewhere.32,71

The weakly bending rod consists of N cylinders. N - 1 bond
vectors, hi of length h, between the N cylindrical subunits of
this rod point from the center of the ith to the center of the (i
+ 1)th disk. A bending spring, with elastic constant, κ, serves
to resist deformations of the bond vectors away from the z axis
of the rod. The z axis is an end-to-end vector that passes through
the center-of-mass of the string of discs. In order to separate
bending from twisting, the rod is assumed to experience no
twisting torques since twisting motions have already been
accounted for in the twisting theory. In this local molecular
frame, instantaneous x and y axes are assigned to the rod, and,
having removed any twisting deformations, the projection of
the bond vectors onto the local x and y coordinates can be used
as a measure of bending motions. Although the potential energy
of deformation is a function of the polar angle between
successive bond vectors, the Langevin equations of motion are
more readily solved in terms of the x-y projections. If ηi is the
angle between the projection of the ith bond vector in the yz
plane and the z axis, then the potential energy is given by

U) κ

2
ηtAη (2.38)

where

A ) (-1 1 0
1 -2 1
0 1 ···

) (2.39)

is now an (N - 1) × (N - 1) matrix.
Assuming the rod deforms only weakly, the following

linearization connects translational motions in the ŷ direction
of the local Cartesian coordinate system with bending deforma-
tions ηi:

sin(ηi))
(yi+1 - yi)

h
≈ ηi (2.40)

An equivalent expression is used for displacement in the xˆ
direction, wherein the angle between the projection of the ith

Theory for Spin-Lattice Relaxation of Spin Probes J. Phys. Chem. B, Vol. 112, No. 30, 2008 9225



bond vector in the xz plane and the z axis is 	i. By performing
this change of variables, the dynamics of bending are describable
by translational Langevin equations whose solution can be
found. Furthermore, these equations can be modified so as to
closely resemble the twisting Langevin equations, so that the
solutions we have already found for correlations in that problem
are directly applicable here.

Note that there are only N - 1 such angles between the N
subunits unlike the twisting problem where every cylinder
possesses a twist angle. In matrix form, the angle η and
displacements y are related by

η ) 1
h

δy (2.41)

where

δ ) (-1 1 0 0
0 -1 1 0
0 0 ···

···
) (2.42)

is an (N - 1) × N difference matrix.
From the energy of the system and the principles of

equilibrium statistical mechanics, we find that the same-time
auto- and cross-correlation functions for bending are21,52

〈η(t)η†(t)〉 ) kT
κ

A-1 (2.43)

As is true for twisting, A-1 is the pseudo-inverse because
one eigenvalue of A is zero. Because EPR measurements can
measure only properties that depend on the autocorrelation of
the angular velocity, the lowest eigenvalue and eigenvector that
correspond to uniform translation are omitted from the analysis.
In doing so, we are free to select subunits of identical geometry
for both the twisting and the bending problems. This simplifica-
tion is not possible if the theory must correctly account for rigid-
body translational diffusion, an objective that lies behind the
choice of larger spheres in the original WBR model.

The transformation in eq 2.41 allows us to write a translational
Langevin equation of motion that correctly includes hydrody-
namic interactions between subunits:

mÿ + γẏ + κ

h2
HDy )F (2.44)

where m is the mass of each cylindrical disk, γ is the translation
friction factor, F is the matrix of random forces, and H is the
hydrodynamic interaction tensor. H is, in turn, a sum of the
identity matrix and the Rotne-Prager tensor:

H ) 1 +T (2.45)

T is a real, symmetric Toeplitz matrix that is accurate for
the equilibrium position of the rod and hence to all thermally
accessible states of deformation in the WBR limit.5 Finally, we
set the matrix D equal to the product of the A and difference
matrices:

D ) δ†Aδ (2.46)

We can now reverse the transformation from η to y and write
the equation of motion (2.44) in terms of the angular coordinates
rather than the displacement coordinates:

IBη̈ + γBη̇ + κH
˜

Aη )R (2.47)

where

H
˜
) δHδ† (2.48)

and R ) hδF, IB ) h2m, and γB ) h2γ. This series of
transformations from angular to Cartesian and back to angular
coordinates is performed to (1) correctly include hydrodynamic
interactions and (2) solve directly for the angular correlation
functions. The reduced hydrodynamic matrix, H

˜
, shares the

same properties as the hydrodynamic matrix, H, in that it is
real and symmetric, can be inverted, and has all positive
eigenvalues. H and H

˜
contain none of the adjustable param-

eters and are constant matrices that depend only on the number
of subunits in the WBR. We can transform this problem to one
that is identical to the twisting problem by symmetrizing eq
2.47. Using the property that (H

˜

1⁄2)† ) H
˜

1⁄2 we write a
symmetric, but wholly equivalent, equation of motion:

IB
̈ + γB
̇ + κA
˜

 )H

˜

-1⁄2R (2.49)

where � ≡ H
˜

-1⁄2η, and A
˜
) H

˜

1⁄2AH
˜

1⁄2 . The definition for A
˜

,
A
˜
) H

˜

1⁄2AH
˜

1⁄2 , seems to suggest that

A
˜

-1 ) (H˜

1⁄2AH
˜

1⁄2)-1)
?

H
˜

-1⁄2A-1H
˜

-1⁄2 (2.50)

or

A-1)
?

H
˜

1⁄2A
˜

-1H
˜

1⁄2 (2.51)

However, because A and hence A
˜

are singular matrices and
because their inverses are only pseudo-inverses (A ·A-1 * 1),
the second parts of eq 2.50 and eq 2.51 are not identities. The
two sides of these equations differ in practice by a few percent.

From these definitions, it follows that the bending displace-
ment, CB(t), and velocity, VB(t), correlation functions are
expressible in terms of �:

CB(t)) 〈η(t)η†(0)〉

)H
˜

1⁄2〈
(t)
†(0)〉H
˜

1⁄2 (2.52)

and

VB(t)) 〈η̇(t)η̇†(0)〉

)H
˜

1⁄2〈 
̇(t)
̇†(0)〉H
˜

1⁄2 (2.53)

This problem now is indeed identical in form to the twist
problem. A

˜
can be diagonalized by an orthogonal transforma-

tion, Q
˜

B:

Q
˜

B†A
˜
Q
˜

B )ΛB (2.54)

so eq 2.49 is transformed into a normal mode problem that
exactly parallels the twisting motion differential equation:

IBF̈ + γBḞ + κΛBF)QB†H
˜

-1⁄2R (2.55)

The solution to eq 2.55 is found by following the procedure
used in the twisting problem. The resulting formula for normal
mode bending angular correlation functions is21,52
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CF
B(t)) kT

2κ
(ΛB)-1[(1 - (SB)-1) e-r+B t + (1 + (SB)-1) e-r-B t]

(2.56)

and, for the bending motions themselves:

CB(t)) (H
˜

1⁄2Q
˜

B)CF
B(t)(H

˜

1⁄2Q
˜

B)† (2.57)

Again, the understanding is that the singular eigenvalue of
the ΛB matrix is removed from the inverse and the uniform
mode is treated separately. At time zero, the term in the brace
of eq 2.56) reduces to a constant, and the time independent
correlation functions52 then are:

CB(0)) kT
κ

(H
˜

1⁄2Q
˜

B)(ΛB)-1(H
˜

1⁄2Q
˜

B)† ) kT
κ

H
˜

1⁄2A
˜

-1H
˜

1⁄2

(2.58)

From the equilibrium condition imposed by the laws of
statistical mechanics, the result for the initial correlation
functions must satisfy

CB(0)) kT
κ

A-1 (2.59)

CB(0) is used as a boundary condition to adjust the initial
amplitudes of the bending displacement correlation functions:

CB(t)) kT
2κ

A-1(H
˜

-
1

2Q
˜

B)[(1 - (SB)-1) e-r+B t +

(1 + (SB)-1) e-r-B t](H
˜

1

2Q
˜

B)† (2.60)

where

A-1 ) (H
˜

1

2Q
˜

B)(ΛB)-1(H
˜

1

2Q
˜

B)† (2.61)

This replacement now guarantees that the time evolution will
be consistent with the differential equation of motion, and that
the time zero values will be consistent with that from the
equilibrium statistical mechanics.21

We can employ the relation derived in eq 2.25 to immediately
write down expressions for the velocity correlation functions:

VF
bending(t)) 〈 Ḟ(t)Ḟ†(0)〉

) kT

IB

(SB)-1

2
{(1+ SB) e-r+B t - (1- SB) e-r-B t}

(2.62)

where

r(
B ) γB

IB

{1( SB}
2

(2.63)

and

SB )�1- 4ΛB (κ / γB)

(γB / IB)
(2.64)

in complete analogy with the twisting functions.
From eq 2.54,

ΛB )Q
˜

B†A
˜
Q
˜

B )Q
˜

B†H
˜

1⁄2AH
˜

1⁄2Q
˜

B ) (H
˜

1⁄2Q
˜

B)†A(H
˜

1⁄2Q
˜

B)

(2.65)

(H
˜

1/2Q
˜

B) is a matrix that diagonalizes A to generate the
eigenvalues of A.

˜
(H

˜
1/2Q

˜
B) is not unitary, but the unitary

transformation of A
˜

by Q
˜

B gives the proper eigenvalues.
These values are not the same as the those of A. Note also
that, even in the absence of the Rotne-Prager tensor, the
eigenvalues of the bending would still resemble the square
of the eigenvalues of the twisting problem, since the matrix
A
˜

is analogous to a fourth order difference expression,
whereas A by itself is analogous to a second order difference
expression.

An examination of the velocity autocorrelation function shows
that, at time zero,

VB(0)) kT

IB
H
˜

(2.66)

Unlike the case for twisting motions, the single disk diffusion
coefficient, Ddisk

B ) kT/γB, is not identical to that of the uniform
mode, D1

B, because of the hydrodynamic interactions involved.
Instead, the magnitude of the uniform mode diffusion is reduced
in proportion to the number of beads squared. The diffusion
matrix for the entire system is the integral over the velocity
correlation matrix:

D⊥
B )∫0

∞
VB(t) dt)(H

˜

1

2Q
˜

B)[∫0

∞
VF

B(t) dt](H
˜

1

2Q
˜

B)† )

kT

γB
(H

˜

1

2Q
˜

B)EB(H
˜

1

2Q
˜

B)† (2.67)

Alternatively, one can write

D⊥
B )D1

BH
˜

1

2(1 -A
˜

-1A
˜
)H

˜

1

2 (2.68)

Only the uniform mode contributes to the perpendicular
rotational diffusion; therefore, every element of D⊥

B is the
same as every other element. EB contains a single nonzero
element; that is, EB

i, j ) δj,1δi,1 and EB ) 1 - (ΛB)-1ΛB. As
such, the matrix, D⊥

B, can be written in terms of the pseudo-
inverse matrix, which does not contain the uniform mode.
The subtraction of (ΛB)-1ΛB from the identity removes the
internal modes contributions and leaves only the uniform
mode to contribute to D⊥

B. The numerical value of the
diffusion coefficients has been developed by Song et al.52

The relationship between the entries in D⊥
B is not so simply

related to D1
B as is true with twisting, but the magnitude of

ratio of D⊥
B over D1

B is ∼1/N2.
The Fourier transforms of the velocity correlation functions

that are required for the calculation of R1e are easily derived
from the above expressions. As a demonstration, we consider
a general Fourier-Laplace transform (FLT) of the bending
velocity correlation matrix. We indicate the FLT variable by
a tilde over the quantity transformed.

ṼB(w)) (H
˜

1

2Q
˜

B)(∫0

∞
e-wtVF

B(t) dt)(H˜

1

2Q
˜

B)†

) kT

IB
(H

˜

1

2Q
˜

B)
(SB)-1

2 (∫t)0

∞
e-wt[(1 + SB) e-rBt - (1 -

SB) e-rBt]dt)(H˜

1

2Q
˜

B)†

) kT

IB
(H

˜

1

2Q
˜

B)
(SB)-1

2 [(1 + SB)
1

w1 + rB
- (1 - SB)

1

w1 + rB](H
˜

1

2Q
˜

B)†

(2.69)

where the transform variable, w is
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w) iω+ r0 r0g 0 (2.70)

Equation 2.69 is the most general form of the FLT that we
will need for the velocity autocorrelation functions. It subsumes
the uniform mode of motion and contains only the bending force
constant, κ, as an adjustable parameter. (The number of subunit
discs is known a priori and the disk friction factors are calculated
from well-known expressions for cylinders.72,73) In the limit as
the moment of inertia goes to zero, one can obtain a simplified
expression for ṼB(w):

lim
If0

ṼB(w)) kT

γB
H
˜

1

2QB[1 - κ

γB
ΛB(w1 + κ

γB
A
˜ )-1]QB†H

˜

1

2

) kT

γB
H
˜

1

2[1 - κ

γB
A
˜ (w1 + κ

γB
A
˜ )-1]H

˜

1

2 (2.71)

The FLT of the angular velocity correlation functions for the
twisting modes of motion is given by

Ṽ(w))Q(∫0

∞
e-wtVF(t) dt)Q†

)Q
(S)-1

2 [(1 + S)
1

w1 + r+
- (1 - S)

1
w1 + r-]Q†

(2.72)

Taking the same limit as the moment of inertia goes to zero
gives

lim
If0

V
˜
(w)) kT

γ [1- R
γ

A(w1+ R
γ

A)-1] (2.73)

These FLT forms will be needed for the spectral density
functions that will be introduced later in our work. In particular,
eq 2.71 and eq 2.73 are needed to describe the spin rotation
mechanism.

3. Relationship of the Lipari-Szabo (L-S) Formalism
to the Weakly Bending Rod Model. As has been shown by
Schurr, correlation functions between WRM elements arise
naturally in the context of magnetic resonance relaxation theory.8

These WRM correlations are, in turn, related to the correlation
functions for the angular displacements. Specifically:

Gp,p′(t)) δq,q′〈Dp′,q′
l (Ω(t))Dp,q

l (Ω(0))〉 (3.1)

where

〈Dp′,q
l *(Ω(t))Dp,q

l (Ω(0))〉 ) δp,p′
1

2l+ 1
×

exp[-((l(l+ 1))- p2)
〈∆x2(t)〉

2 ]exp[-p2〈∆z2(t)〉
2 ] (3.2)

and the displacements along x and z refer to the bth disk and
are the autocorrelations of that disk. The Cartesian displacements
can be written in terms of angular difference correlation
functions. For bending, the difference correlation function in
angles is

1
2

〈∆xb
2(t)〉 )D⊥ t+ 1

2
〈[ηb(t)- ηb(0)]2〉 (3.3)

and for twisting, it is

1
2

〈∆zb
2(t)〉 )D|t+

1
2

〈[φb(t)- φb(0)]2〉 (3.4)

These angular correlation functions are separated into the
uniform modes, characterized by the overall diffusion coef-

ficients D⊥ and D|, defined above in eq 2.68 and eq 2.37, and
the internal motions of bending and twisting, defined in eq 2.60
and eq 2.18. Now consider the correlation function for the bth
disk. The relationship between the difference correlation function
in eq 3.4 and the correlation functions derived above for the
internal twisting motions of the WBR is

1
2

〈[φb(t)- φb(0)]2〉 ) [C(0)-C(t)]b,b (3.5)

Similarly, the relationship for the internal bending motions
is

1
2

〈[ηb(t)- ηb(0)]2〉 ) [CB(0)-CB(t)]b,b (3.6)

Combining eqs 3.1 through 3.3 and eq 3.6, we obtain for the
internal bending mode contribution to the position correlation
function:

exp[-((l(l+ 1))- p2)[CB(0)-CB(t)]b,b] (3.7)

A similar equation for twisting is given by

exp[-p2[C(0)-C(t)]b,b] (3.8)

Equations 3.7 and 3.8 are 1 at t ) 0 and approach a constant
at t f ∞. This is because the internal modes are zero at time
zero and build to the constant (CB(0))b,b or (C(0))b,b at large
times. These forms guarantee that the correlation functions
decrease as time t increases. Schurr and co-workers demonstrate
that this property of internal modes results in an amplitude
reduction factor to the correlation functions.8,50,74 If the decay
rate of the internal modes is rapid compared with the uniform
modes, the primary effect of internal motion is to reduce the
amplitude of the correlation functions. This reduction then
carries over directly to the spectral density function, or the
Fourier transform of the correlation function, and hence reduces
the relaxation rate accordingly. The difficulty of developing
analytic formulas for the spectral density functions is that the
correlation functions in eq 3.5 and eq 3.6 are sums of
exponential terms in the WBR model. Then, eq 3.7 becomes
the exponential of exponentials. Calculation of the spectral
density, eq 1.4, requires a FT of the resulting exponential of
exponentials, a transform for which there is no closed analytic
solution.

Lipari and Szabo (L-S) formulated a model free47 (or a
generalized model) method to account for the effects of internal
motions and thereby circumvented the transform impasse. In
the L-S model, any model-specific manifestations of the
correlation functions in eq 3.7 or eq 3.8 are subsumed in a
model-independent expression. The equivalence is expressed
simply as

exp[-p2[CB(0)-CB(t)]b,b]} S2 + (1 - S2) exp[-t / τI]

(3.9)

S2 is the square order parameter, or the amplitude reduction
factor. Lipari and Szabo recognized that the equivalence was
justified since at time zero both sides of eq 3.9 are one, and as
t f ∞, both approach a constant value.

In order for the two forms to be equal at infinite time, it is
required that exp[-p2[CB(0)]b,b] ) S2. The time constant, τI, is
an effective relaxation time associated with the internal dynam-
ics. The L-S equation is simple and treats the internal motion
as relaxing according to a single exponential. In contrast, the
WBR model is anisotropic in the sense that its correlation
functions depend on the integer p and in general contain both
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twisting and bending processes that decay independently. Lipari
and Szabo consider the possibility of including additional
internal dynamics to accommodate such anisotropic motion, but
these extensions introduce adjustable parameters for which no
tie to a physical model exists to provide substance for their
interpretation. The WBR model, on the other hand, automatically
produces anisotropic decay to accommodate data with complex
relaxation dynamics, and introduces only the twisting force
constant, R, the bending force constant, κ, and the number of
discs as its physically relevant parameters.

The disadvantage of a direct application of the WBR results
to a practical analysis of EPR data is the added complexity of
the functional forms and summations in the correlation functions.
Our effort is to find a general function of the L-S form that
can capture the effects of the correlation functions predicted
by the WBR and maintain the simplicity suggested by Lipari
and Szabo. To that end, we have explored equating the WBR
model relaxation functions to stretched exponentials. This is
motivated in part by the observations of Schurr and co-workers
that in the intermediate motion regime the twisting dynamics
have the appearance of being not just exponential in time4 or
exp[-t/τ], but also decaying as the square root of time or
exp[-(t/τ)�], where � ∼ 1/2, and that bending dynamics have
a similar form8 and � ∼ 1/4. The general form of the decay
then is examined as a series of stretched exponentials.

Therefore, we consider fitting varied numerical decay curves
from the twisting correlation functions for the internal modes
as

exp[-p2[C(0)-C(t)]b,b]) Sp
2 + (1- Sp

2) exp[-( t
τp

)�p]
(3.10)

where

Sp
2 ) exp[-p2[C(0)]b,b] (3.11)

The bending decay functions are similarly compared to
stretched exponentials:

exp[-((l(l+ 1))- p2)[CB(0)-CB(t)]b,b])

(Sp
B)2 + (1- (Sp

B)2) exp[-( t

τp
B)�p

B] (3.12)

where

(Sp
B)2 ) exp[-((l(l+ 1))- p2)[CB(0)]b,b] (3.13)

We now wish to find the best stretched exponential in these
L-S approximations to the WBR correlation functions. In order
to find these, we rearrange the expressions to isolate the stretched
exponentials. For twisting, we obtain

exp[-( t
τp

)�p] ) exp[-p2[C(0)-C(t)]b,b]- exp[-p2C(0)b,b]

1 - exp[-p2C(0)b,b]

)
exp[p2C(t)b,b]- 1

exp[p2C(0)b,b]- 1
(3.14)

The right-hand side of the expression is defined by the WBR
model. The left-hand side contains two parameters, �p and τp,
that are adjusted by a least-squares method to find the best fit
to the correlation functions. Similarly, isolation of the stretched
exponential in eq 3.12 gives

exp[-( t

τp
B)�p

B] ) exp[((l(l+ 1))- p2)CB(t)b,b]- 1

exp[((l(l+ 1))- p2)CB(0)b,b]- 1

(3.15)

Rather than treat twisting and bending separately as in eqs
3.10-3.15, we opt for a more generic expression that subsumes
both types of motion into a general expression for the overall
correlation function in terms of stretched exponentials. We
define the overall correlation function as

Gp(t))Gp
0(t)Gp

I (t) (3.16)

where

Gp
0(t)) 1

2l+ 1
exp[-[((l(l+ 1))- p2)D⊥ + p2D|]t]

(3.17)

and

Gp
I (t)) exp[-((l(l+ 1))- p2)〈[ηb(t)-

ηb(0)]2〉 exp[-p2〈[φb(t)- φb(0)]2〉 (3.18)

Gp(t) is the product of the decay of the uniform modes, Gp
0(t),

and the internal modes, Gp
I (t). At t ) 0, the internal modes do

not contribute to the correlation function because Gp
I (0) ) 1.

As t f ∞ or, less stringently, when t is much greater than the
decay time of the longest internal modes, τmax

I , the accumulated
effect of the decay of internal modes is a constant amplitude
reduction factor:

Gp,p′
I (t. τmax

I )) (Sp
I )2

) Sp
2(Sp

B)2

) exp[-p2[C(0)]b,b] exp[-((l(l+ 1))-

p2)[CB(0)]b,b] (3.19)

Following the same reasoning leading up to eq 3.10 and eq
3.12, we equate a stretched exponential version of the L-S
formula to eq 3.19:

Gp,p′
I (t)) δp,p′{ (Sp

I )2 + (1- (Sp
I )2) exp[-( t

τp
I )�p

I]}
(3.20)

This is a single internal function that combines both twist
and bend. We will demonstrate how the internal correlation
times and amplitudes can be given in terms of the twisting and
bending parameters through the use of this equation and the
least-squares fitting of the stretched exponential to the WBR
correlation functions:

exp[-( t

τp
I )�p

I] )
exp[((l(l+ 1))- p2)[CB(t)]b,b] exp[p2[C(t)]b,b]- 1

exp[((l(l+ 1))- p2)[CB(0)]b,b] exp[p2[C(0)]b,b]- 1
(3.21)

Aside from the dependence on the integer index p and the
stretched exponential, eq 3.20 is indistinguishable from the L-S
equation, 3.9. However, the correlation functions that determine
the S parameter, as well as the stretched exponential rates, are
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determined from the WBR model. Despite the apparent intro-
duction of variables on the right-hand side of eq 3.21, only two
parameters, R and κ, are adjustable once the number and
geometry of disk subunits is set and the solvent conditions
determined. No ad hoc introduction of additional parameters is
required to account for complex relaxation rates.

4. A. Fourier Transform of the Stretched Exponential.
Analytical expressions for the FT of the exponential of
exponentials are unknown; this motivated the hybridization of
the L-S method with the results of the WBR model. However,
there are also no known analytical expressions for the FT of
stretched exponentials that appear in eq 3.20. More generally,
the problem of obtaining a spectral density function for a
stretched exponential provides a very general tool in magnetic
resonance, since there are often situations when no specific
model is a candidate for description of the modes of motion. In
such cases, the use of the generic form given in eq 3.20 is the
only recourse. For these reasons, we now review a method to
find the spectral density function of a stretched exponential.

The solution of representing the FT of a stretched exponential
(also known as the Kohlrausch-Williams-Watts (KWW)
function, fKWW) by series expansion in terms of a set of simple
exponentials decaying at different rates has been solved by
Lindsey and Patterson.55 This expansion is given by

fKWW(t) ≡ exp[-( t
τw

)�]
=∑

n)1

N

gn exp[- t
τw

rn] (3.22)

where the time constant for each exponential is given as

τn ≡
τw

rn
(3.23)

The FT of the summation is easily taken if a suitable set of
expansion coefficients and rates can be found:

f̃KWW(ω) ≡∫t)0

∞
exp[-iωt] exp[-( t

τw
)�] dt

=∑
n)1

N

gn

τw

iωτw + rn
(3.24)

Because of the finiteness and discreteness of the sum, the
coefficients must be renormalized to guarantee that ∑n gn ) 1.

The expansion in eq 3.22 is written in terms of rn because rn

depends only on the ratio of τn to the stretched exponential time,
τw. The sete of rn is chosen on a logarithmic scale:

rn ) 10λn - λmaxe λne λmax (3.25)

Satisfactory results are obtained on the longest time scales
required for N e 101, and for values of � in the range 0.2 e �
e 0.999. The coefficients of the expansion are

gn )-(∆λ
π )∑

k)0

∞
Γ(�k+ 1)
Γ(k+ 1)

sin(π�k)(-1

rn
� )k

(3.26)

where ∆λ is the (equal) spacing between the values chosen for
the logarithmic set of rn values in eq 3.25.

Equation 3.26 is a divergent power series but remains
numerically bounded up to about 200 terms. In fact, convergence
is reached within 150 to 180 terms, so gn is well-defined for
the expansion required in eq 3.24. The terms in eq 3.26 are
summed by Horner’s method to obtain sufficient numerical

accuracy. Despite the precautions in Horner’s method, numerical
instability occurs for small values of rn for which λn < 2(1 -
1/�). Empirically, it is found that, for these small rn, the
coefficients may be set to zero without loss of accuracy; that
is, gn(rn: λn < 2(1 - 1/�)) ) 0.

A useful approximation to f˜KWW(ω) is given by

f̂(�) ≡ flow
�

1+
flow

fhigh
�1+�

=R{ τf̃KWW(ω)} (3.27)
where

�)ωτw (3.28)
and

fhigh )
�(3- �)

2

flow ) (1
�){

3

4(1

�
-1)} (3.29)

This approximation deviates slightly only for � ∼ 1.
Otherwise, f̂(�) offers a simple, descriptive, and accurate value
for the spectral density from which useful statements can be
made without detailed computation. This is demonstrated in
Figure 4. Note that the approximation is good everywhere except
in a single order of magnitude surrounding � ∼ 1.

The effort to represent the internal functions in eq 3.18 in
terms of stretched exponentials in eq 3.20 which then are
expanded in terms of eq 3.22, or the approximation in eq 3.27,
is worthwhile for the following reasons. The internal correlation
functions are solved in quasi-analytic forms that are efficiently
calculated. Moreover, the dependence on only the bending and
twisting force constants is retained in the quasi-analytic forms.
In fact, the transformation from internal correlation functions
to a stretched exponential function requires little computational
effort as it is performed with robust and well-established least-
squares fit protocols, such as the Levenberg-Marquardt algo-
rithm. The further transformation from the stretched exponential
representing the correlation functions to the spectral density
utilizes the well-established KWW solution developed by
Patterson and Lindsey and is also performed easily. Finally,
the stretched exponential approach may have many general
applications to magnetic resonance that go well beyond the
specific applications to the WBR model used here.

4.B. Application to the WBR Model. We group together
the relaxation processes from the uniform modes and define a
single time constant, τp

0 as

1

τp
0
) [((l(l+ 1))- p2)D⊥ + p2D|] (3.30)

Then the form for the spectral density function, as the FT of
the correlation function, is

Jp,p′

≡ δp,p′f̃p(ω)

) 1
2l+ 1∫t)0

∞
e-iωt exp[- t

τp
0][(Sp

I )2 + (1- (Sp
I )2)∑

n)1

N

gn exp[- t

τp
I
rn]] dt

) 1
2l+ 1[(Sp

I )2 τp
0

iωτp
0 + 1

+ (1- (Sp
I )2)∑

n)1

N

gn

τp
I

iωτp
I +

τp
I

τp
0
+ rn] (3.31)

Equation 3.31 is the result for the spectral density function
generated by replacing the internal relaxation function with a
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stretched exponential form in the L-S formalism.48,49 The
parameters of the stretched exponential are determined from
the WBR rod model.8,74

An aspect of the WBR model that we have omitted is the
inclusion of an initial amplitude reduction factor which has no
time dependence and parametrizes all unknown short-time
processes leading to decorrelation.8,52,74 Inclusion of this initial
factor is avoided since, in magnetic resonance theory, it can be
absorbed into the coupling tensors in the Hamiltonian.

5. Spectral Density Function for R1e
SR. The one relaxation

mechanism that is not well-developed in the literature is that
for the spin rotation mechanism. As commented above, this
involves knowing the correlation functions for the angular
velocities, which are now incorporated into the overall expres-
sion for the spectral density functions from the spin rotation
mechanism.

With the aid of equations developed in sections 1-4, we can
write out the spectral density function J p,p′

SRm,m′(ω) for the spin
rotation mechanism:

J p,p′
SRm,m′(ωe))∫t)0

∞
e-iωetG p,p′

SRm,m′(t) dt (5.1)

where

G p,p′
SRm,m′(τ))

δn,n′〈D1*(ΩL-D(0))p,nD
1(ΩL-D(τ))p′,n′ 〉 × 〈 (ωI(0)ωI

†(τ))m,m′ 〉

(5.2)

as introduced previously in eq 1.17 and included again here for
convenient reference. For l ) 1, we have by eq 3.30

1

τp
0
) [(2- p2)D⊥ + p2D|] (5.3)

and, using the L-SsWBR formalism summarized by eq 3.31,

〈D1*(ΩL-D(0))p,nD
1(ΩL-D(τ))p′,n′ 〉 )

δp,p′

3
exp[- t

τp
0][(Sp

I )2 +

(1- (Sp
I )2)∑

n)1

N

gn exp[-( t

τp
I )rn]] (5.4)

For the velocity correlations appearing in eq 5.2, we write

〈[ωI(0)ωI
†(τ)]m,m′ 〉b,b ) { δm,m′[V(t)]b,b

δm,m′[V
B(t)]b,b

m) z
m) x, y

(5.5)

The spectral density for the twisting velocity correlation
functions is

Jp,p′
z,z (ω))

δp,p′

3 ∫t)0

∞
e-iωt e-t⁄τp

0[(Sp
I )2 + (1-

(Sp
I )2)∑

n)1

N

gn e-(t⁄τp
I)rn][V(t)]b,b′ dt

)
δp,p′

3 [(Sp
I )2[Ṽ(w)]b,b + (1- (Sp

I )2)∑
n)1

N

gn[Ṽ(wn)]b,b]
(5.6)

where

w) iω+ 1

τp
0

(5.7)

and

wn ) iω+ 1

τp
0
+

rn

τp
I

(5.8)

The spectral density for the bending motions is

Jp,p′
x,x (ω)) Jp,p′

y,y (ω))
δp,p′

3 [(Sp
I )2[Ṽ B(w)]b,b + (1-

(Sp
I )2)∑

n)1

N

gn[Ṽ
B(wn)]b,b] (5.9)

The FLT for the twisting and bending correlation functions
are defined above in eqs 2.69 and 2.72. Equations 5.6 and 5.9
are two of the main results of this work.

Materials and Methods

1. Experimental Procedures for Spin-lattice Relaxation
Measurements on DNA. In the spin-lattice relaxation studies
presented in this work, we use a novel spin probe that is rigidly
locked into the helical structure. It is a cytosine-mimic, Ç, that
is synthesized and incorporated into a phosphoramidite for solid-
state DNA synthesis, as described elsewhere.10,29 DNA oligo-
mers are synthesized on an ASM 800 DNA synthesizer from
Biosset (Russia). Modified and unmodified oligonucleotides are
synthesized by a trityl-off synthesis on a 1.0 µmol scale (1000
Å CPG columns) using phosphoramidites with standard base
protection. All commercial phosphoramidites, columns, and
solutions are purchased from ChemGenes. For spin-labeled
DNA, the spin-labeled phosphoramidite is site-specifically
incorporated into the oligonucleotides by manual coupling. The
DNA is deprotected at 55 °C for 8 h and purified by 23%
denaturing polyacrylamide gel electrophoresis (DPAGE). The
oligonucleotides are visualized by UV shadowing. The bands
visible in shadowing are excised from the gel, crushed, and then
soaked in TEN buffer (250 mM NaCl, 10 mM Tris, 1 mM
Na2EDTA, pH 7.5) for 20 h. For filtration of DNA elution
solutions, 0.45 µm polyethersulfone membrane (a disposable
filter device from Whatman) is used. The DNA elution solutions
are desalted using Sep-Pak cartridges (Waters Corporation)
according to the manufacturer’s instructions. The spin-labeled
sequences are then combined in a 1:1.2-1:1.5 ratio with a
complementary unlabeled strand of the same length and
hybridized stepwise on a thermocycler (90 °C for 2 min, 60 °C
for 5 min, 50 °C for 5 min, 40 °C for 5 min, and 22 °C for 15
min) before the sample is returned to 4 °C. The final concentra-
tion of the spin-labeled DNA is between 80 and 150 µM in a
50 mM potassium 3-(N-morpholino) propanesulfonic acid (K-
MOPS; 20 mM K+), pH 7.0, with strand concentrations
determined by absorbance at 260 nm.

In order to examine the R1e results across a range of rotational
correlation times, the length of the DNA is varied from 11 to
47 base-pairs, and the viscosity is adjusted between 1 and 15
cP by adding sucrose, a neutral osmolyte that does not
significantly alter the internal structure of DNA.75 For all
sequences, the spin probe is incorporated at a position 7 base-
pairs from the 3′-end, in reference to the spin-labeled strand.
The solvent viscosity is calculated from the known sucrose
concentration using well-established empirical formulas.76 The
diffusion coefficients for rigid cylinders with dimensions on the
order of the DNAs used in the experiments are calculated from
well-known hydrodynamic equations.5,21,52,72,73 The spin-labeled
DNA sequences are shown in Table 1. The spin labeled base is
represented by Ç, in red. The original 11-mer is extended by
12 bases on the 5′-end, as indicated by blue lettering, to form
23-, 35-, and 47-mers.
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Pulsed saturation recovery (pSR) spectra were acquired on a
home-built EPR spectrometer with both continuous wave (CW)
and pulsed saturation recovery (pSR) EPR measurement capa-
bility.36 In order to select the appropriate magnetic field at which
to perform the pSR experiment, a CW spectrum must first be
collected on the pSR instrument, with resolution at 1024 points
over a range of 90 Gauss during one scan at a constantly applied
-12 dBm microwave power, with 1 Gauss modulation ampli-
tude and a modulation frequency of 10 kHz. The highest spin
density point is the center of the center field resonance manifold,
of the three 14N resonance manifolds in the CW spectrum. That
highest spin density resonance position is chosen as the field
position at which to apply the pump pulse for the pSR
experiment. To collect data by pSR, a 200 ns pump pulse at
9.2 GHz with +20 dBm of microwave power is applied,
followed by 90 ns of dead time. The response is observed with
an offset of 100 kHz at -12 dBm of microwave power. The
typical time resolution for a pSR spectrum in this study is 20
ns per point, for 4096 points and averaged over 4.8 × 106 scans
(80% of the scans on resonance and 20% ∼100 Gauss off
resonance, to allow for background subtraction). Multiple spectra
were collected on multiple days, to ensure reproducibility. To
determine the reliability and consistency of sample preparation,
the 23-mer and 47-mer measurements were repeated with two
sets of unique, independently prepared samples, and the results
were statistically the same for both preparations. All samples
used in the TD instrument are in a gas permeable 0.8 mm inner
diameter Teflon capillary tube under a continuous stream of N2

gas at ∼21 °C. All measured spin-lattice relaxation rates are
highly reproducible. The standard deviation of each data point
ranges from 0.3 to 4.5% of the mean value.

2. Computational Methods. The correlation functions and
order parameters are computed according to the WBR theory
and summarized in the Theory section above. We use eq 3.21
to fit the decaying correlation functions for internal motions to
stretched exponentials, in a least-squares sense, using a
Marquardt-Levenberg minimization algorithm. All fitting is
done using programs written and executed in Matlab. One- and
two-exponential fits are also tested and compared with the
stretched exponential fits as shown in Table 2. The τp

I /tmax ratio
is kept reasonably constant and on average is 0.03 with a
standard deviation of 0.02 for all lengths, spin label positions,
and p values. The time scale, tmax ∼ 30 · τp

I , is chosen to be long
enough to maximize fit quality but short enough that the fit is
not overweighted by the nearly zero (fully decayed) part of the
function. The fit to a single exponential gives about a 5- to 10-
fold larger standard error than the fit to a stretched exponential.
Agreement of the single exponential is good only at the early
time decay and misses the middle of the autocorrelation decay.
Errors on Figures 4-7, which show the results of fitting to the
stretched exponentials, are within the size of the symbols. The
fits are repeatable, independent of the choice of beginning
estimates for the functional parameters. For all displayed figures,
R/kT is kept equal to 100, as that is a reasonable approximation

for R/kT for 10-200 bp DNAs under these experimental
conditions.3,4,7,8,21,77 In this work, we intend to examine the effect
of changes to parameters other than R/kT.

We test a fit of the correlation functions to the sum of two
standard exponentials as well as to the sum of two stretched
exponentials (data not shown) and find an insignificant improve-
ment in the fit of the data. Moreover, fitting to two stretched
exponentials with separate decay rates and �p

I exponential values
is overparameterized for reliable convergence. All comparative
tests are done for either a middle-labeled 23-mer or a middle-
labeled 201-mer.

Results

1. Experimental Data Motivating Theoretical Develop-
ment. We have recently carried out pSR-EPR experiments to
measure for the first time the R1e of a spin probe in a series of
duplex DNAs. The DNA is duplexes of length 11, 23, 35, and
47 base-pairs. Figure 1 illustrates the spin probe, Ç, base-paired
to a natural guanine.29 Figure 2a shows the R1e values as a
function of the geometrically averaged rotational correlation
time, 〈τperp

2 τpara〉1/3 for the overall rotational motion of the duplex
DNA.72,73 The solid line shows the predicted R1e values for a
range of rotational correlation times, based on the relaxation

TABLE 2: Fit of Exponential Functions to WBR Modela

length [bp] κ/kT p τp
I [ns] �p

I

23 150 0 0.03706 ( 0.00037 0.5501 ( 0.0042
23 150 0 0.04837 ( 0.0014 1
23 150 1 0.05052 ( 0.00035 0.5547 ( 0.0029
23 150 1 0.06487 ( 0.0018 1
23 150 2 0.09311 ( 0.00052 0.6285 ( 0.0032
23 150 2 0.1113 ( 0.0025 1

23 350 0 0.01738 ( 0.00013 0.5816 ( 0.0034
23 350 0 0.02236 ( 0.00049 1
23 350 1 0.04173 ( 0.00021 0.5025 ( 0.0017
23 350 1 0.05551 ( 0.0019 1
23 350 2 0.09984 ( 0.00061 0.6348 ( 0.0035
23 350 2 0.1189 ( 0.0027 1

201 150 0 32.18 ( 0.62 0.4808 ( 0.0058
201 150 0 46.55 ( 1.8 1
201 150 1 18.75 ( 0.36 0.424 ( 0.0042
201 150 1 27.98 ( 1.3 1
201 150 2 5.081 ( 0.012 0.3936 ( 0.0042
201 150 2 9.26 ( 0.32 1

201 350 0 18.16 ( 0.32 0.5184 ( 0.0063
201 350 0 25.12 ( 0.87 1
201 350 1 10.27 ( 0.074 0.4828 ( 0.0022
201 350 1 14.13 ( 0.51 1
201 350 2 5.726 ( 0.019 0.5575 ( 0.0014
201 350 2 7.329 ( 0.19 1

a Included are results of fitting autocorrelation functions to either
a single exponential (where � ) 1) or to a stretched exponential, at
21°C, with R/kT kept equal to 100. The standard error for each
parameter is shown in the column after its value.

TABLE 1: Sequences for DNAs Studied by pSRa

length [bp] sequence

11 5′-d(CCC TÇT TGT CC)-3′
23 5′-d(AGG TTG ATT TTG CCC TÇT TGT CC)-3′
35 5′-d(TGT GTA AGT TTT AGG TTG ATT TTG CCC TÇT TGT CC)-3′
47 5′-d(GCG GCT CCA ATG TGT GTA AGT TTT AGG TTG ATT TTG CCC TÇT TGT CC)-3′

a The spin labeled base is represented by Ç. The original 11-mer is extended by 12 bases on the 5′-end to form 23-, 35-, and 47-mers. Only
the spin-labeled strand of the duplex is shown; each spin-labeled sample is prepared as a duplex with its appropriate full complement. The
position of the spin label is 7 with respect to the 3′-end in all cases.

9232 J. Phys. Chem. B, Vol. 112, No. 30, 2008 Smith et al.



theory37 outlined in the Theory section, assuming that the DNA
moves as a rigid object. It can be seen in Figure 2a that the
theoretical prediction is about a factor of 2 smaller than the
data. This discrepancy motivated this theoretical development
to include the internal motions in the calculation of R1e for DNA.
Figure 2b illustrates that, as the length of the DNA increases,
the R1e drops up to ∼35 base-pairs, but for 47 base-pairs, the
R1e has increased a statistically significant amount.

Figure 3 shows the spectral density functions as a function
of the internal correlation time, using the L-S formulation of
the spectral density function in eq 3.31. The uniform modes
used for the rotational correlation times in the equation are those
of the 23-mer, based on established hydrodynamic theory.72,73

The spectral density functions are shown as a ratio to the spectral
density for just the uniform modes, where S2 ) 1. Figure 3
demonstrates that the internal motions can increase the spectral
density functions as the order parameter is reduced, which
becomes more pronounced as the internal correlation time
approaches the reciprocal of the spectrometer frequency.
Because the R1e rates are proportional to the spectral density
functions, then an increase in the spectral density function, as
a result of including internal dynamics, will increase R1e. This
provides one possible qualitative explanation for why measured
R1e rates are higher than those predicted by only overall tumbling
motions.

2. WBR Internal Dynamics Described by Stretched
Exponential. We have mapped the WBR internal dynamics into
a simple stretched exponential with an order parameter, Sp

2, an
internal correlation time, τp

I , and a stretched exponential power,
�p

I , as defined in eq 3.20. Figure 4 shows the effect of the

exponent � on the spectral density function eq 3.24: the smaller
the exponential power � becomes, the larger the spectral density
becomes at correlation times away from the peak center.

Figure 5 shows the dependence of Sp
2, τp

I , and �p
I on κ/kT, for a

fixed twisting constant, R/kT ) 100, for a 23-mer DNA. κ/kT, a
dimensionless quantity, can be directly interpreted as the number
of base pairs in a persistence length. The range was chosen to span
the ranges of persistence lengths reported in the literature. As κ/kT
increases, Sp

2 correspondingly increases for any value of p. Only
bending modes contribute to the p ) 0 case, which has the highest
order. Figure 5a demonstrates that the order parameter increases
as the bending force constant increase, which is consistent with
the DNA becoming stiffer. In Figure 5b, τp

I decreases, as κ/kT
increases for p ) 0, (1. For the case where p ) (2, τp

I does not
change because the correlation function is dominated by the
twisting dynamics, which are fixed by R/kT ) 100. The exponent
�p

I of the stretched exponential is roughly constant and around 1/2.
It is somewhat larger for the p ) (2 case because the twisting
contribution is larger. It is not obvious why for the p ) (1 case
the exponent decreases.

Figure 6 shows Sp
2, τp

I , and �p
I as functions of the length of

the DNA for two different values of κ/kT. The order parameter
decreases monotonically with increasing length, and increases
with increasing force constant. Comparing the p ) 0 to the p
) (2 case shows that the order parameter is less for the latter

Figure 2. Experimental R1e data for 11- to 47-mer duplex DNAs in
varying viscosity solutions are shown. Symbols indicate data for DNA
of specific length: 9 ) 11-mer, 0 ) 23-mer, ) ) 35-mer, O ) 47-
mer. The spin-labeled DNAs are prepared as explained in the methods
section and are measured at 9.2 GHz on a home-built time domain
EPR spectrometer.10,36 Sequences are shown in Table 1. The simulated
values (solid line) are based on the calculated R1e rates for a rigid rod
with overall rotational correlation times that span the range of
experimental values.37 The measured rates are plotted as functions of
the geometrically averaged rotational correlation time, τj ) 〈τ|τ⊥

2 〉1/3 for
a rigid rod of the same dimensions as the DNA. Standard hydrodynamic
theory is used to calculate the anisotropic rigid rod rotational correlation
times as a function of length and viscosity.72,73 In the bottom half of
the figure, R1e values for the four sequences, all in 0 w/v % sucrose,
are shown. Error bars are shown with the data and are comparable in
size to the markers. The markers are consistent for the different lengths,
in both the top and the bottom sections of the figure.

Figure 3. Lipari-Szabo spectral density for simple isotropic motion,
Jp ) 0

L S ) R{S2(τ0/(1 + iωτ0)) + (1 - S2)(τ I/(1 + iωτI + τI/τ0))}, (eq
3.31) over a range of τIand S2 values and for a spectrometer frequency
of 9.2 GHz. The Jp

LS are shown relative to that of the spectral density
from the uniform mode. The Jp

LS for each value of S2 is divided by the
Jp

LS for the uniform modes, when S2 ) 1. The results are shown for S2

) 0.9 (black) through S2 ) 0.4 (lightest grey). Diffusion coefficients
for the overall molecule are calculated from hydrodynamic theory for
rigid cylindrical models, based on the dimensions of a 23-mer duplex
DNA at 21 °C and 1 cP.72,73 The results for p ) 0 are shown.

Figure 4. Stretched exponential spectral density times the spectrometer
frequency, f̃KWW(�) ) τf̃KWW(ω) (solid lines) as given by eq 3.24, is
plotted versus � ) ωτp

I for different values of �. Overlaid (dash-dot
lines) is the approximation given in eq 3.27, f̂(�), which does very
well in the limiting values away from the maximum. � ) 0.25 is in
black, � ) 0.75 is in the lightest grey, and � ) 0.5 is in between.
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case. This is expected, as the p ) (2 case includes the twisting
dynamics, which reduces the order parameter. To a first
approximation, the order parameter has an exponential depen-
dence on 1/N. In Figure 6b, τp

I increases with increasing length
of the DNA, with a sharper increase for the p ) 0 case. The
value of τp

I is not affected by κ/kT when p ) 2 because twisting
is a dominant contribution. Figure 6c shows that �p

I is near 1/2
for all lengths and bending rigidities and is maximal when the
DNA is 25 to 50 base-pairs in length. The value of �p

I drops
most abruptly with length when κ/kT ) 150, its less rigid value,
and p ) 2, as twisting has a higher contribution.

In Figure 7, we plot Sp
2, τp

I , and �p
I as a function of the position

along the DNA for a 23-mer. The order parameter decreases

monotonically toward the end of the DNA. The DNA is
symmetric about the b ) 12 base pair position. First order WBR
theory shows that the order parameter at the end should be equal
to the order parameter in the center raised to the fourth power.
The internal correlation times are the largest at about 3/4 of the
way toward the end. This is the position where the DNA is
most flexible, where the first internal (the “horseshoe”) mode
is most active. As illustrated in Figure 4, as the DNA becomes
stiffer as the internal correlation times become smaller.

Figure 8 shows a spectral density function that incorporates
the results of the fitting of the stretched exponentials, for a
spectrometer frequency of 9.2 GHz. Values of τp

I and �p
I were

obtained from fitting the position-dependent correlation functions
for a 23-mer DNA. The spectral densities are highest at the
ends of the 23-mer for all values of p. The spectral densities
decrease sharply until b = 6, at which point they begin to
increase again slightly. These spectral densities are frequency
dependent and would be higher at a lower spectrometer
frequency.

Discussion

The fundamental theory relates the relaxation rates for all
mechanisms to spectral density functions. Figures 3 and 4

Figure 5. Order parameter, Sp
2, and the parameters of the stretched

exponential, τp
I , and �p

I as a function of κ/kT and p, for a middle-labeled
23-mer DNA, using eq 3.14. The symbol 0 represents p ) (2; O
represents p ) (1, and ) represents p ) 0. The stretched exponential
is calculated from a least-squares fit to the site-specific WBR theory,
using diffusion tensors for cylindrical molecules obtained from
hydrodynamic theory, based on the dimensions of a 23-mer duplex
DNA at 21 °C and 1 cP.72,73 The Sp

2 are calculated from the site-specific
WBR model (3.18), as described within this work. The dotted lines
are added only as an aid to the eye.

Figure 6. Order, Sp
2, and stretched exponential parameters, τp

I , and �p
I

at κ/kT ) 150 (white with black edges) and κ/kT ) 350 (grey), for p
) 0 (triangle, 2) and p ) 2 (squares, 9), for middle-labeled DNAs as
a function of the length of the DNA, all at 21 °C and 1 cP. The length-
dependent diffusion coefficients were calculated from the hydrodynamic
theory for cylindrical molecules, based on the dimensions of duplex
DNA.72,73 The Sp

2 are calculated from the site-specific WBR model
(3.18). The dotted lines are added only as an aid to the eye.

Figure 7. Parameters of a stretched exponential, Sp
2, τp

I , and �p
I , as a

function of the position of the spin label on a 23-mer DNA at 21 °C
and 1 cP. κ/kT ) 150 (white with black edges) and κ/kT ) 350 (grey),
for p ) 0 (triangles, 2) and p ) (2 (squares, 9). The Sp

2 are calculated
from the site-specific WBR model (3.18). The base positions greater
than 12 (not shown) are related to the ones less than 12 by mirror
symmetry. The dotted lines are added only as an aid to the eye.

Figure 8. Stretched exponential-based spectral density function Jp(ω)
(3.30) is plotted versus the position of the spin label and as a function
of p, for a 23-mer DNA at 21 °C and 1 cP. The symbol 0 represents
p ) (2; O represents p ) (1, and ) represents p ) 0. The parameters
of a stretched exponential, Sp

2, τp
I , and �p

I , for κ/kT ) 350, are shown in
Figure 7 and used in calculating Jp(ω).
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demonstrate the general features of the spectral density functions
of stretched exponentials. They have their maximal value when
the rates of motional processes, characterized as τ-1, are on the
order of the spectrometer frequency, or ωτ = 1. This holds for
spectral densities that include internal motions (Figure 3) and
spectral densities described by stretched exponentials (Figure
4). We suspect that the experimental R1e rates decrease with
increasing rotational correlation times (Figure 2a) because the
relevant relaxation times are all larger than the optimal time,
for which ωτ ) 1. The spectral density functions for a DNA
measured at 9.2 GHz are said to be in the “slow motional side”
of the spectral density maximum.

Figure 3 provides insight into how the rates could increase
as the length of the DNA increases (as noted in Figure 2b).
The spectral densities increase when the internal correlation time
is smaller (“shorter”) than the uniform mode times and the order
parameter decreases. If the internal correlation times were much
faster than the spectrometer frequency, then as the order
parameter decreased the spectral density would also decrease.
Therefore, the numerical value of the internal time is extremely
important in determining whether the spectral densities increase
or decrease as the order parameter changes.

By equating the forms of internal relaxation predicted by the
WBR model to those of the generalized spectral density
functions, we can gain approximate insight into the WBR
model’s predictive capability to describe the proper internal
correlation times and order parameters. Because the WBR model
predicts order parameters and times for any positional correlation
function, the full form and dependence on the index p can be
kept in computing the spectral density functions. This is not
possible with the model-free form, because there is no underly-
ing structure to relate correlation functions with different indices.
Figure 5 illustrates the dependence of the order parameters on
the p index for different values of the bending force constant
(with the twisting held constant). The parameters of the internal
motion are plotted as a function of κ/kT because this (dimen-
sionless) quantity is the number of discs contained in a
persistence length. All of the order parameters increase as the
bending constant increases, because the model of DNA is
becoming stiffer. The p ) 0 mode contains only the bending,
and that term increases the most rapidly. The p ) (2 mode is
most heavily weighted with the twisting and bending contribu-
tions muted in this term. Similar effects are seen in the internal
correlation times, τp

I . Because twisting dominates the p ) (2
mode the time of that mode changes little. For the p ) 0 mode,
as the molecule becomes stiffer, the internal correlation times
become smaller. This is a general feature of the WBR model
for the motional modes for both twisting and bending. The
values of the stretched exponent, �p

I , really do not change much
with stiffness, as they consistently are around 1/2, which was
anticipated from the analytic theories of Schurr.4,8 The surprising
part is that for the p ) 0 mode the exponent never goes below
about 0.4, even though values as low as 1/4 have been suggested
by theory; but such dependencies are only over limited time
ranges. Therefore, the overall curves may be compromised by
the early and late time regions where the correlation functions
are simply exponential in time (i.e., not stretched), especially
for short DNAs. Because �p

I ∼ 1/2, this underscores the need
for a stretched exponential. As developed in Materials and
Methods, the fit to a stretched exponential gave parameters that
were accurate to a few percent, and an overall fit to the WBR
correlation functions had a much smaller standard error than a
single exponential. Further improvements to the fitting using
two distinct stretched exponentials were minimal.

The dependence of the internal parameters on length is the
one that bears most on the experimental observations (Figure
2). Figure 6 demonstrates that the order parameters, for all values
of p, do indeed decrease with increasing length, when the
bending and twisting force parameters are held constant. It is
an assumption of the WBR model that the force parameters are
indeed independent of length. For a larger κ/kT, the order drops
more slowly as would be expected for a stiffer molecule. The
decrease in order parameter with increasing length follows well
the first order theory that the order parameters should decrease
exponentially with increasing N.8 The internal correlation times
increase with length, in a fashion very similar to the increase
in the correlation times of the normal modes, demonstrated
previously.21 The exponent, �p

I , varies with N but within the
0.5-0.6 range.

An interesting test of the WBR model is the dependence on
the position along the DNA. Figure 7 illustrates the dependencies
for a 23 disk model. The order parameter decreases as the
position of the label moves from the center to the end. Theory
predicts that the order parameter at the ends should be equal to
the order parameter in the middle raised to the fourth power.21

This seems to be followed. The internal correlation times
increase and are maximal about 1/4 of the way in. This is where
the lowest internal eigenmode (the “horseshoe” shaped mode)
is maximal. Because the DNA is so short, this mode can
dominate the dynamics. This is affirmed by noticing that the
exponent maximizes where the correlation times maximize,
indicating that the decay curves are closer to single exponential,
as though being dominated by a single mode. Figure 8 shows
how the various terms (shown in Figure 7) contribute to the
spectral density function. The spectral density is smallest in the
center of the system and increases by about twofold toward the
ends. This increase would be interpreted as greater flexibility
of the ends. As one can see from the terms that contribute
(Figures 7 and 8), the spectral density is a complicated mix of
order parameter and correlation time. The shorter correlation
time toward the end, coupled with the lower order parameter,
allows the spectral density to increase. This demonstrates the
principle that a site specific label can be a very good test of the
internal dynamics.

Conclusions

We have shown that the correlation functions for the WBR
model can be used to develop a formalism that parallels the
L-S “model-free” approach. By adapting the L-S forms to
include the WBR model, we provide a basis for relating order
parameter and internal correlation time to the force constants
of bending and twisting, as well as DNA length and position
of spin label. In essence, we combine the simplicity of the
model-free approach with the physically meaningful WBR
model, which requires only two adjustable parameters.

Finally, to quantitatively understand the internal dynamics
and simulate the spin-lattice relaxation rates of dsDNA, we
have developed the correlation functions necessary to describe
the spin rotation mechanism. This work represents the first
attempt to include a many modes model into the velocity
autocorrelation function, and the resulting forms should help
explain the dependence of the spin rotation mechanism on
internal dynamics. On the basis of the framework we have
developed here, the R1e for any given dsDNA can now be
described on the basis of simply its overall tumbling rotational
correlation times (which can be calculated rapidly on the basis
of length, viscosity, and temperature), spectrometer frequency,
spin label position within the dsDNA, and the two internal
bending and twisting force constants, κ and R.
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